Automating the Build

This paper was originally presented at the Southwest Fox conference in Tempe, Arizonain
October, 2006.

Automating the Build

Rick Borup

Information Technology Associates
701 Devonshire Drive, Suite 127
Champaign, IL 61820

Email: rborup@ita-software.com
Blog: http://rickborup.convblog/

Overview

Compiling your VFP project into an EXE is only the first step in the deployment process. How do
you get from there to a complete setup package that’s ready to deploy? Do you have an organized
and repeatable process to ensure a successful build? To what extent is that process automated?
This session explores ways to automate the build, from partialy automated methods using popul ar
utilities to more fully automated methods using specialized software such as FinalBuilder and
Visual Build Pro.

© 2006 Rick Borup
Page 1 of 43

http://rickborup.com/blog/

Automating the Build

What is a build?

A build is the process of compiling the source code, gathering up all the required distributable
files, and creating the deployment package' for an application.

The process generaly begins with the building of the application’s main executable file and other
files that require compilation from source code. It usually finishes with the building of a

distributable deployment package using a setup
authoring tool such as Inno Setup, InstallShield, or
Wise. If your development environment includes the use
of version control software?, your build process also
encompasses any necessary interactions with the source

A build is the process of
creating the deployment
package for an application,
starting from its source code.

code repository.

The specifics of the build depend on how your development environment is configured. In the
smplest case, dl the files might reside on a single machine (even if source control is being used)
and all the steps in the build process might take place on that same machine. In ateam
development environment or even a more sophisticated environment for an individual developer,
the source code repository is likely to be on a server, each developer likely has her own machine,
and there may even be a separate machine dedicated do doing nothing but the build.

Every developer probably has his or her own preferred way of configuring the development and
deployment directories on their own machine(s) and/or network. This may be a matter of
individual preference, or it may be determined by company or team requirements. Regardless of
personal preferences or company standards, though, some things are common to all Visud
FoxPro development environments.

In Visual FoxPro, each application has its own project directory. Thisiswhere the VFP project
file and other project-specific source code files reside, and istypicaly located on your local
machine. If you're not using version control software, this may be the only place (other than
backups) where the project file and source code filesreside. If you are using version control
software, the project directory on your local machine is probably the “working directory” where
you do your development work after checking source code files out of the repository.

When it comes time to compile the application into an EXE, you can of course do so directly
from your local project directory. Thisistypicaly the case when source control software is not
being used. If source control software is being used, you can still build the EXE from your loca
project directory, but you would first want to check out al source code filesinto your local
working directory to be sure you had the latest copy, especidly if you' re working with other

! The term * deployment package’ is used to mean the file or files that get distributed to the end user to install the
product. The deployment package could be a single Setup.exe, a CD-ROM containing several files, or even an
installation package designed for the Web. Regardless of its physical nature, conceptually it's al the same thing.

2| tend to use the terms “version control software” and “source control software” interchangeably. In both cases,
I’m referring to software such as Visual SourceSafe, SourceGear Vault, Subversion, and other software packages
whose purpose is to manage source code across multiple versions and devel opers.

© 2006 Rick Borup
Page 2 of 43

Automating the Build

developers on the same application. Another approach is to check out all the source code files out
into atemporary directory and compile the project from there.

However you approach it, though, compiling the application’s main executable and its other
distributable files such as DLL’sisjust the first step in the overall build process.

The EXE itself isusually only one of severa files you need to distribute to the end user. Y ou also
need to distribute any other files required at runtime but not included (embedded) in the EXE.
This can include areadme file, a Help file, an INI file, the VFP report filesif they're externa to
the EXE, and so on.

The EXE and other distributable files mentioned above usualy start out in your devel opment
directory, but your development directory also haslots of other stuff init that you don’t need to
distribute. A good example is the source code files themselves.

The set of distributable files from your development directory represent one set of the total files
required for building arelease, but other files are required, too.

In Best Practices for Deployment?, | suggest one best practice is to create a deployment directory
from which you build the deployment package. The idea of a deployment directory isto create a
place that contains the latest versions of all distributable files, and only the distributable files.

Some but not all of the filesin the deployment directory change from build to build. Files that
typically change for each build include the application’s EXE, readme (version history) file, and
possibly other files from the application’s project directory. These files need to be copied from the
development directory to the deployment directory before building the deployment package.

Other files typicaly do not change from build to build, or at least not for every build. Examples
include empty data files, meta data files, etc. These files can be placed in the deployment directory
on a semi-permanent basis, and are updated only occasiondly, if ever.

What is an automated build?

An automated build is a standardized, reliable, and repeatable way of running the build process
with little or no manua intervention.

It's important to understand that an automated build performs the same steps as a manual build.
The differenceisthat it automates some or al of the steps you would otherwise have to perform
manually. Before you can begin to automate your build process, you need to start by enumerating
the steps you use in your manual build process.

Steps in the build process

As you begin the process of automating your builds, the first requirement isto formally enumerate
the steps you use to perform abuild. This may sound simplistic, but until you have documented
the steps you perform and the order in which you do them, you are not ready to tackle any form
of automation.

3 Visual FoxPro Best Practices for the Next Ten Years, Hentzenwerke Publishing, 2006 — Chapter 13

© 2006 Rick Borup
Page 3 of 43

Automating the Build

If you' re an independent developer who works primarily on straightforward V FP apps, you may
be tempted to say, “ There are only two steps. compile the EXE and build the Setup! What’s to
write down?’

While those are in fact the two primary tasks in any build process, it’s usually not dl that simple.
Take time to think about all the things you actually do within those two tasks: setting build
options in the VFP project, updating version numbers, tweaking the setup script, managing
GUIDsfor MSI setups, etc. Beyond that, do you use source control software? If so, how do you
handle checking in and checking out files from the repository for a build? What tool or tools do
you use to create the deployment package? And onceit’s built, how do you deploy the completed
setup package? Do you create a CD or copy it to an FTP site? Do you make a backup of al
source and deployment files for each build, and if so, how?

In other words, even a simple build process usually involves more than first meets the eye, and
each of these steps is a candidate for automation.

Without version control

For purposes of this paper, I'm going to discuss a smplified build process. If version control
software is not being used, that process involves only three main steps:

1. Build the EXE and any other components such as DLLs that require compilation from the
project source code

2. Copy the new EXE, DLLSs, etc. into the deployment directory
3. Build the deployment package from the deployment directory.

There are or course sub-tasks to perform within these three steps, such as updating a Help file or
a Readme file, updating the setup script for the new version, etc. But if you're not using version
control software, these three steps are essentialy dl thereisto it.

With version control

If you are using version control software, there are a couple of additional steps to perform on the
front and back end of the three steps above:

1. Check inyour latest changes to the source code repository
Retrieve all the source code files from the repository”

2
3. Build the EXE from the project source code
4

. Copy the new EXE, DLLSs, etc. into a deployment directory aong with the other
distributable files

5. Build the deployment package from the deployment directory

* Y ou might choose to fetch source code files from the repository directly into your development directory, or you
might prefer to fetch them into a temporary directory whose only purpose is to support the building of the
application’s EXE. The process is functionally equivalent either way.

© 2006 Rick Borup
Page 4 of 43

Automating the Build

6. Check in the updated setup script or project file, along with any other files that belong in
the repository

Steps 1 and 2 comprise whatever you need to do to make sure all the most recent source code
changes are included in the build. If you're working as a solo developer and you' re building your
EXE from your working (development) directory, you may not need to perform step 2 because
your working directory is already up to date. On the other hand, if you' re a member of ateam—
or even if you are a solo developer using a more formalized build process—then step 2 may
involve fetching al current source code files from the repository into atemporary directory that’s
used only for compiling the EXE. This approach keeps the files used in the build separate from
the filesin your working directory, and for that reason may be considered a safer way of doing
things.

Steps 3, 4, and 5 are the same three core steps mentioned above. Again, they aso comprise
whatever sub-tasks are required to produce all the necessary distributable files.

Step 6 is optional, but when the build process is complete it’s likely you' re going to want to check
into the repository at least some of the updated files produced by or used in the build process. |
recommend at a minimum checking in the current setup script (Inno Setup script, InstallShield or
Wise project file, or whatever) because you' re going to need it if you ever want to re-do the same
build. Y ou may aso want to check in a copy of the new EXE, DLLs, compiled Help file and its
source files, and so on, but it's a matter of some debate whether or not binary files and generated
files should be included in a version control repository.

The sample app

In order to have something to work with, | created a sample Visua FoxPro application called
myVFPApp. It'san overly smplistic app—in fact, all the EXE doesis display “Hello, Southwest
Fox!”"—~but it has enough parts to serve as an example for automating the build.

The distributabl e files of the sample application are:
myV FPApp.EXE — the program executable file
myVFPApp.CHM —the Help file
Readme. TXT —the verson Readmefile
rptCustomers.FRX/FRT — an externa report (not embedded in the EXE)
myDatabase.DBD/DCT/DCX — the VFP database container files
Customers.DBF/CDX/FPT — a Customers table, initialized for first use

The sample app’s directory structure

The build process I’m using as an example here involves only a development directory and a
deployment directory. I'm deliberately leaving version control and a source code repository out of
the picture for the sake of smplicity.

The development directory is where the VFP project file and source code filesreside. Thisis
where you do al your development work, and also where you compile the EXE.

© 2006 Rick Borup
Page 5 of 43

Automating the Build

The deployment directory, on the other hand, is a place to put the updated distributable files. It is
the source for the files the setup authoring tool uses to build the deployment package. Use of a
deployment directory is optional, but | believe it represents a best practice because it keeps the
distributable files separate from the devel opment files and thereby helps avoid unintentional
changes or corruption that might occur during development work.

The physical directory names I’m using for the sample app are shown below. These directories are
referenced in the examples to follow, and are presented here so you’ Il know what they represent
when you see them later on.

The development directory is C. \ SWFox2006\ VFP9Apps\ ny VFPApp. It has a conventional
set of sub-directories like Data, Help, and Reports.

The deployment directory is C: \ SWFox2006\ VFPIDI st ri b\ myVFPApp. It has sub-
directoriesidentical to the development directory, but only those containing files needed
for deployment.

Other files pulled in by the setup compiler come from
C: \ SWFox2006\ VFPIDi st ri b\ Syst en82 and C. \ SWFox2006\ VFPIDi st ri b\ Acti veX.

The VFP 9 runtime support library files come from their installed location in\ Pr ogr am
Fi |l es\ Cormon Fil es\ M crosoft Shared\ VFP.

The build process illustrated

The build process I’m using here follows the three steps enumerated above when version control
isnot being used. The illustration in Figur e 1 should help you conceptualize the process.

© 2006 Rick Borup
Page 6 of 43

Automating the Build

The Build Process

Development Deployment
Directory Directory

Working Directory Distributable Files Other files to deploy:
Source code and other - VFP9 Runtimes
project files not to be Files to be deployed: - ActiveX Controls
deployed: | - etc,
"""""""""""" - myVFPApp.EXE
- myVFPAPp. PIX/PIT —»| - myVFPApp.CHM
- myVFPApp.PRG - myReport. FRX/FRT
- other source code - Readme.TXT
- files included in EXE
- test files A 4
- backup files
- notes to yourself >
- etc. oth - - ¥ Setup Compiler

: er project-specific >
Iml files to be deployed:
{} - myDatabase.DBC
- Customers.DBF
Files to be deployed: - etc.
- myVFPApp.EXE \ 4
- myVFPApp.CHM SETUP.EXE
- myReport.FRX/FRT
- Readme. TXT

Figure 1: The build process copies the updated EXE and other files from the development directory to
the deployment directory, then runs the setup compiler to produce Setup.EXE.

Looking at Figure 1, you can see that the development directory is where the EXE and other
distributable files are first created. This directory also includes other files that do not get
distributed to the end user, such as the VFP project file, source code files, test files, backup files,
temporary files, and so on. Some but not al of the filesin the development directory are
distributable. Those that are get copied to the deployment directory as part of the build process.

After being updated for a new release, the deployment directory contains a copy of the current
distributable files from the development directory. These file are typically updated for each and
every build. The deployment directory also contains other project-specific distributable files that
may not need to be updated for every build, such as the database container file and the initialized
copy of the Customerstable.

Finally, Figure 1 aso shows athird set of directories from which other non-project specific
distributable files are pulled. These include the VFP 9 runtime support library files, ActiveX
controls, etc.

© 2006 Rick Borup
Page 7 of 43

Automating the Build

The steps in the build process can be traced from left to right in Figure 1, starting with compiling
the EXE, continuing with copying the updated files to the deployment directory, and finishing by
running the setup authoring tool to generate the deployment package.

Building the VFP EXE

One of the first steps in the build process is to compile the main EXE from the project source
code. Among the things you typically need to do before compiling the new EXE for distribution
are:

Set VFP to recompile al files from their source code
Clean out any printer-specific information from the first record of dl VFP report files

Turn off the debug code flag (unless you intentionally distribute your executable with
debug code included)

Increment the version number of the EXE

VFP does not lend itself to automating these tasks very well. Y ou can write a script to run the
compiler from the command line, and VFP 9.0 does a much better job of keeping printer-specific
information out of report files than earlier versions did, but the process of building the EXE,
although not difficult, islikely to be at least partialy manual regardless of how fully automated
your build processis.

Fortunately thereis at |east one tool that makes building the EXE easier. The free Project Builder
from White Light Computing, Inc. gives you access to everything you need in one convenient
window, asillustrated in Figure 2. Y ou can download the WLC Project Builder from
www.whitelightcomputing.com/prodprojectbuilder.htm.

© 2006 Rick Borup
Page 8 of 43

www.whitelightcomputing.com/prodprojectbuilder.htm

Automating the Build

7 WLC Project Builder (c\swfox2006 \wfp9apps\myvipapp\myVFPApp.PIX) = X
o ewion 2006w pIapps \myvipappmyw fpapp.exe E]
Last Build Date/Time: §/3/2006 10:35:26 AM

Yersion Details About

Version Mumber: | 1.00,0000
() Rebuild project Comments

(O Application (app) Sample application for SWFox 2008 ”
{*) Win32 executable [COM server (exe)
) Single-threaded COM server (dl)

() Multi-threaded COM server (dIl) il
Recompile Al Files? Company
Display Errars? Information Technology Associates

|:| Auto Increment Version?

|:| Regenerate Component ID? e

myVFPApPp
Encrypted Executable?
[pebug Code? File Description
s
Clean * | Report Printer Settings
Display Report Processing Results
L

Legal Copyright
Information Technology Associates, 2006

Legal Trademarks

ITA is a registered service mark of Information Technology Assodates, Cham
Bui
a Up Praiect Language ID
lean Up Projec 1033

[Close] [Register Builder]

Figure 2: The WLC Project Builder from White Light Computing, Inc. provides convenient access to the
options and settings for building the EXE in one convenient window.

Manual builds

The defining characteristic of a manual build process, of course, isthat al steps are performed
manually. If you haven’'t done anything to automate your build, you are by definition using a
manual build process.

A manual build process for the sample app used in this session would look something like this:

If source contral is used, manually check in all your most recent changes, then manually
check out all the files required for compilation.

Build the VFP EXE using the VFP Project Manager or atool like the WLC Project
Builder

Use Windows Explorer or another file manager to individualy copy the new EXE, DLLs,
Readme file, Help file, and other updated distributable files from the working directory to
the deployment directory

Use your setup authoring tool to make any necessary changes to the setup script

© 2006 Rick Borup
Page 9 of 43

Automating the Build

Tell the setup compiler to build the deployment package
Copy the deployment package to a CD or upload it to an FTP site

If source control is used, manually check in any newly created or updated files you want
to store in the repository

Manually make any other backups you may want to capture at this point

Pros and cons

Probably the most attractive characteristic of amanual build isthat it's smple: no special tools or
software are required. This makes it the least expensive solution, if you don’t count the value of
your time.

By its very nature, a manual build requires direct personal involvement in each step. Some
developers might consider this a positive thing because they get to observe and control each step
along the way. Other developers might fed thisis a strong negative because it’ s time consuming
and prone to error.

Either way, a manual build is tedious because it requires you to manualy perform the same steps
in the same order over and over again for each build. Human nature being what it is, it's easy to
forget a step or make a mistake when handling things by hand.

Another disadvantage of manual buildsisthat thereis no log of what was done, unless the
developer creates one manually.

Tools

The best way to improve the reliability of a manual build processisto use a checklist. All the
time. For every build. A smple checklist in Notepad or Word works just fine, but software tools
that specialize in creating and using checklists can be helpful. Two of these are TaskTracker
(www.positive-g.com) and ListPro (www.iliumsoft.com).

I’ve used ListPro for a number of years and for a variety of purposes. Although primarily intended
for use on a Palm® PDA, thereis aso a Windows® version that works well for the kind of
checklist you need for a manual build. Figure 3 shows a sample of what such alist might look like
in ListPro.

© 2006 Rick Borup
Page 10 of 43

www.positive-g.com
www.iliumsoft.com

Automating the Build

W ListPro - DeploymentChecklist.clf =Jo&d

File Edit View Items Tools Help
MEk BX QIO £V g 48 BFQAQAE| S

W DeploymentChecklist, cif
D Deployment Checklist

ltem

= Application Deployment Checklist
DEC
[Help and Version Documentation
Update and rebuild CHM if necessary
Update Readme. TXT
Update History TXT
Update DatabaseHistory TXT
EIEXE
Clean all reports (TAG, TAGZ, and EXPR ficlds)
Increment version number
Build EXE with RECOMPILE ALL FILES, ENCRYPT ON, DEBUG CODE OFF
[El Copy files to deployment directory
myVFPApp EXE
myVFPApp CHM
Readme. TXT
mtCustomers FRX/FRT
Diata“myDatabase DEC/DCT/DCX
Data“Customers. DBF/CDXAFPT
- Setup Authoring
Run 15Toal
= Update myVFPApR 1SS
Increment version number
Add files f necessary)
Compile Setup EXE

A OoooDoDOoO0OO0O0OO0O00OO0O00000000 <

30 Items (0 Checked)

Figure 3: ListPro helps you create and use checklists, such as one you might want to use for a manual
build process

Reasons to automate
While a checklist makesit easier to reliably manage a manual build process, there are many
compelling reasons to automate the build.

An automated build process runs faster, saving valuable time in the development and
deployment process.

An automated build requires less manual involvement, reducing the devel oper’ s work
load.

An automated build is more reliable because it reduces the number of opportunities for
human error.

In an automated build process al actions are scripted, which createsintrinsic
documentation of the steps involved in the build.

The benefits of automating the build are apparent even in asimplistic build process like I’'m using
here. The more complicated the build process, the more important these benefits become.

© 2006 Rick Borup
Page 11 of 43

Automating the Build

Semi-automated builds

The primary characteristic of a semi-automated build is that some of the steps are partially or
perhaps even completely automated, but overall the build process still requires a good deal of
manual involvement.

In a semi-automated build, individual steps may be grouped together and run as a unit, but each
group still needs to be initiated manually.

Semi-automated builds can take advantage of low-cost, general-purpose utilities to make the
process less [abor-intensive than a manual build.

Pros and cons

The most important advantage of a semi-automated build, in my view, isthat it reduces the
amount of manual involvement required. Reducing the number of times the developer hasto
manually perform or initiate a step in the build process automaticaly reduces the number of
opportunities for manual error.

Another benefit of a semi-automated build is that you automatically get some documentation of at
least part of the build process. For example, some of the popular file compression utilities can
read afilethat containsalist of the filesto be included in azip file. That list of files not only
automates the zip process but also serves as documentation of that portion of the build.

While a semi-automated build is a step in the right direction compared to a manual build, it is till
has a few disadvantages. The primary disadvantage is that the steps in the build process are not all
chained together, so each step or group of steps must still be launched manually. This of course
means there are still opportunities for manual errors or omissions.

Another disadvantage is that semi-automated builds typically do not generate any kind of log of
what was done. While perhaps not as important in small development shops asin larger ones, it is
still a good idea to generate some kind of log of the build process as part of the documentation
for each release.

Tools

Some common utilities I’ ve found useful for semi-automated builds include WinZip®, PicoZip™,
Beyond Compare®, and the often-overlooked and perhaps long forgotten Windows batch or
command files.

Referring back to Figure 1, consider the different ways you could copy the updated EXE and
other files required for a new release from the development directory to the deployment directory.
In amanua build, you need do this by hand for each individua file using Windows Explorer or
another file manager. In a semi-automated build, however, you can use a utility like WinZip or
PicoZip to create a zip archive as an intermediate storage location, and then use a folder
comparison utility like Beyond Compare to synchronize the latest zip archive with the deployment
directory. This reduces a multi-step process to just two steps, regardless of how many files are
involved.

The following examplesillustrate how these tools can be employed to help achieve a semi-
automated build.

© 2006 Rick Borup
Page 12 of 43

Automating the Build

Updating the deployment directory

The build process illustrated in the examples that follow is patterned after the three steps
mentioned earlier, when version control is not in use. The first step, building the new EXE, is
done from within the VFP IDE. The second step, copying the new EXE and other updated
distributable files from the development directory to the deployment directory, can be
accomplished in a number of ways, but | liketo do it in two parts:

a) Useafile compression utility like WinZip or PicoZip to pull the updated distributable files
from the devel opment directory into a temporary zip archive; and

b) Useafolder synchronization utility like Beyond Compare to update the contents of the
deployment directory with the new files from the temporary zip archive.

The advantages of using a zip file as an intermediate step are:

you can create asimple text file containing alist of the filesto be deployed, rather than
having to handle each file individually;

you isolate the files to be deployed from the other files in the development directory; and

if you choose to use the folder synchronization utility with its user interface visible, you
get visual confirmation of what’s being copied into the deployment directory.

It's probably easiest to understand these advantages if we look at the folder synchronization step
first. Beyond Compare presents a two-panel interface and uses color to show what’s different on
each side. Beyond Compare treats a zip file just like afolder, so we can set it up with the zip file

(source) on left and the deployment directory (destination) on the right, asillustrated in Figure 4.

There are severa things to note about what you seein Figure 4. First of al, the directory
structure within the zip file on the left isidentical to the directory structure of the development
directory from which the files are taken, and therefore also identical to the structure of the target
deployment directory on the right. Thisis important because it enables Beyond Compare to line
up each file with its equivalent on the other side, making it easy for you to spot similarities and
differences.

Next, notice that Beyond Compare’s use of color to identify newer files makes them stand out
from the others. Y ou can see at a glance that the only newer file in the zip archive on the left is
myVFPApp.exe, which is shown in red. Assuming the EXE is the only thing you updated in this
release, this gives you visual confirmation that everything isin order.

Y ou can also quickly compare the size of the new EXE on the |eft with the older one on the right.
In most cases they should be roughly equivaent, at least for minor updates. One advantage of
visually comparing the sizes of the two filesis you can easily tell if something’s out of whack. For
example, if you expect the size of the newer EXE to be roughly the same as the older one but
notice that it's significantly larger, that’s a clue you may have forgotten to turn off debug code
when you compiled the EXE.

Once satisfied the files you' re about to copy into the deployment directory are complete and
correct, simply click the Synchronize to Right button on the Beyond Compare toolbar to copy all
of the newer files into the deployment directory in one step.

© 2006 Rick Borup
Page 13 of 43

Automating the Build

& myVFPApp - Update Install from ZIP Backup [Beyond Compare]

BEX]

' Session Actions Edit Search View Tools Help

x]*- =@~ wwd fEEy Q9
%7 Session: | & myVFPApp - Update Install from ZIP Backu |+ | [E] Filters: |*.* ke] {_@
C:\SWFox 2008\ TempimyVFRApp_Update, zif| » = 55 |CH\SWFox2006\WFPaDistrib\myVFPApp w G
Mame Size Modified | | Mame Size Modified
: Data & Data
customers, CDX 16,896 7/12/2003 12:15:10 pm i-m customers, COX 16,896 7/12/2003 12:16:10 pm
customers.DEF 26,257 7f15/2006 12:00:26 pm m customers.DEF 26,257 Ff15/2006 12:00:26 pm
myDatabase.DBEC 4,348 7/15/2006 12:05:33 pm n myDatabase . DBC 4,348 7/15/2006 12:05:38 pm
i--m myDatabase.DCT 960 7/15/2006 12:05:38 pm i--m myDatabase.DCT 960 7/15/2006 12:05:38 pm
myDatabase.DCK 4,608 7/15/2006 12:05:38 pm Ho] myDatabase.DCK 4,608 7/15/2006 12:05:38 pm
&8 Help S8 Help
Hoof] myvipapp.chm 13,113 7/15/2006 11:53:34 am el myvfpapp.chm 13,113 7/15/2006 11:53:34 am
S output
fem myVFPApp 1.0.0 Setup.exe ©,22 MB 8/25/2006 9:53:35 am
&3 Reports &3 Reports
rptCustomers. frt 5,568 7/15/2006 12:02:56 pm l rptCustomers. frt 5,568 7/15/2006 12:02:556 pm
fem rptCustomers. frx 12,315 7/15/2006 12:02:56 pm fem rptCustomers. frx 12,315 7f15/2006 12:02:56 pm

n InfoBeforeFile.rtf
m License rtf
34,712 8f8/2006 10:35:26 am Em
u myVFPAPp.iss
m readme. txt
m YFP3 Runtime Files. txt

5,804 8/3/2006 9:38:02 pm
7,547 B/3/2006 9:40:26 pm
yvfpapp.EXE 34,688 2006 11:13:
6,817 8/4/2006 10:44:40 am
37 1/31/2004 7:09:52 pm
1,531 2/24/2005 11:37:30 am

n myvfpapp.exe 44 pm

m readme. txt 37 1/31/2004 7:09:52 pm

9/4/2006 12:08:26 PM User name: Rick
9/4/2006 12:08:26 PM Load Comparison: C:\SWFox2006\Temp'myVFPApp_Update.zip <-> C:\SWFox2006\WFPSDistrib\myVFRADD

10 file(s), 116 KB (61 GB free on C:) 15 file(s), 6.36 MB (61 GE free on C:)

Figure 4. Beyond Compare makes it easy to see what'’s different on one side than on the other. In this
example, the executable file myVFPApp.exe is newer in the zip file on the left, as expected.

Y ou can of course create the zip file manually, but the process can be automated. Doing so is
easy, but asit turns out, getting the relative paths to come out as desired is not so easy.

Automating WinZip

There are at least two ways to automate WinZip. Oneis to download and install wzcline20.exe,
the WinZip Command Line Support Add-On for WinZip 10.0. The add-on is free but requires the
more expensive Pro version of WinZip 10.0. Thereisaso aversion of the Command Line Add-
On for WinZip 9.0 and earlier. As of thiswriting, wzclinell.exe and other older WinZip files are
available for download from WinZip's website at www.winzip.com/dprob.htm.

The other way to automate WinZip is to use the “undocumented” command line interface® built in
to WinZip. The syntax for thisinterfaceis

Wi nzi p32 [-min] action [options] filenane[.zip] files

® This “undocumented” interface used to be documented on the WinZip website. That documentation appears to
have been moved or removed from the website, but the interface still works.

© 2006 Rick Borup
Page 14 of 43

www.winzip.com/dprob.htm

Automating the Build

where the following options and parameters apply:

-mn run mnimzed
Act i ons: -a add
- f freshen
-u updat e
-m nove
Opti ons: -r i ncl ude subfol ders

-p store path information

- ex extra conpression

-en normal conpression (default)

- ef fast conpression

-es super fast conpression

-e0 no conpression

-hs i ncl ude hidden and systemfiles

- sPassword case-sensitive password, e.g. —s”nyPassword”

Fi | enane. zi p output file name (include drive and path if necessary)

Files a list of one or nore files, or an anpersand followed by the nane of a file
containing a list of files. Can use wildcards, e.g. *.frx, *.frt, etc.

The primary feature of interest here is the ability to pass the name of afile containing alist of the
filesto be zipped. For the sample application, the list of fileswould look like this:

Listing 1. Files to be copied from the development directory to the deployment directory.

: \ SWFox2006\ VFP9Apps\ my VFPApp\ r eadne. t xt

-\ SWFox2006\ VFP9Apps\ nyVFPApp\ Li cense. rt f

: \ SWFox2006\ VFP9Apps\ my VFPApp\ myvf papp. EXE

: \ SWFox2006\ VFP9Apps\ ny VFPApp\ Dat a\ myDat abase. DCX

: \ SWFox2006\ VFP9Apps\ my VFPApp\ Dat a\ cust oner s. CDX

: \ SWFox2006\ VFP9Apps\ my VFPApp\ Dat a\ cust oner s. DBF

-\ SWFox2006\ VFP9Apps\ ny VFPApp\ Dat a\ myDat abase. DBC

-\ SWFox2006\ VFP9Apps\ ny VFPApp\ Dat a\ myDat abase. DCT

: \ SWFox2006\ VFP9Apps\ nmy VFPApp\ Hel p\ myvf papp. chm

: \ SWFox2006\ VFP9Apps\ my VFPApp\ Report s\ rpt Cust oners. frx
: \ SWFox2006\ VFP9Apps\ nyVFPApp\ Report s\ rpt Custoners. frt

O0000000000

If you store thislist in atext file named myVFPApp_FileList.txt, you can pull al thesefilesinto an
archive named winzip_backup.zip by running WinZip from the command line with the syntax
showninListing 2.

Listing 2. The WinZip command line syntax to create a zip archive from a file containing a list of files.

"c:\program fil es\w nzi p\w nzi p32. exe" -a c:\sw ox2006\t enp\ wi nzi p_backup. zi p
@y VFPApp_Fi | eLi st. t xt

The problem with this approach is the loss of relative path information in the resulting zip file. As
you can see, the sourcefile list gathers files from aroot directory and three of its sub-directories,
but Figure 5 shows the zip file does not preserve the relative path information.

© 2006 Rick Borup
Page 15 of 43

Automating the Build

2 WinZip - winzip_backup.zip g@
File Actions Options Help
2 @ @9 @ @ @ B » B £ @ @
New Open Close Favorites Add Extract Encrypt View CheckOut Wizard Config Comment Help Exit
Name Type Madified Size | Path
= customers, CDX Microsoft Visual FoxPro Index 70122003 12:16 PM 15,896
=] customers.CBF Microsoft Visual FoxPro Table 7/15/2006 12:00 PM 26,257
B License. rtf Rich Text Format 7/4/2004 2:24FM 5,123
_i’[myDatabase.DBC Microsoft Visual FoxPro Database Container 7/15/2008 12:05FPM 4,348
im\;Database.D(—r Microsoft Visual FoxPro Database Container 7/15/2006 12:05 PM 950
EmyDatabase.DCX Paint Shop Pro 7 Image 7/15/2006 12:05FM 4,608
@ myvfpapp.chm Compiled HTML Help file 7/15/2006 11:53 AM 13,113
mefpapp.EXE Application 7/15/2006 12:18 FM 34,711
U readme. txt Readme Document 1/31/2004 7:03 PM 37
a rptCustomers, frt Microsoft Visual FoxPro Repart 7/15/2006 12:02 PM 5,508
H rptCustomers. frx Microsoft Visual FoxPro Report 7/15/2006 12:02 FM 12,315
2 3]
Selected O files, 0 bytes Total 11 files, 122KB 60

Figure 5:Relative path information is lost when the zip archive is created using the command line syntax
in Listing 2.

Thiswould render the comparison in Beyond Compare useless, because the files wouldn’t match
up and you couldn’t easily synchronize the deployment directly with the updated file(s) in the zip
archive.

So we need a different solution. The command line syntax can be changed to store path info, as
showninListing 3.

Listing 3. The WinZip command line syntax to create a zip archive from a file containing a list of files,
including the —p option to include path information.

"c:\program fil es\w nzi p\w nzi p32. exe" -a —p c:\swf 0x2006\t enp\w nzi p_backup. zi p
@y VFPApp_Fi | eLi st. t xt

But if you do it that way you end up with full path info instead of relative path info, as shown in
Figure 6. Thisis equally unacceptable, because it too renders the comparison between the zip file
and the deployment directory useless.

© 2006 Rick Borup
Page 16 of 43

Automating the Build

-0 WinZip - winzip_backup_fullpath.zip =Jo&d
File Actions Options Help
G 9 @ il @ =] > o 4 @ e
New Cpen Favarites Add Extract Encrypt View ChedkOut Wizard Config Comment Help Exit
Mame Type Madified Size | Path
Iﬂl}License.rt‘F Rich Text Format 7/4/2004 2:24 PM 5,129 SWFox2006\WFPIApps'myVFPApPY
mefpapp.EXE Application 7152006 12:18 PM 34,711 SWFox2006\WFPSApps \myVFPApRY
u readme. txt Readme Document 1/31/2004 7:05 FM 37 SWFox2006\WFPSApps \myVFPApPY
=) customers. CDX Microsoft Visual FoxPro Index 7/122003 12:16 PM 15,896 SWFox2006\WFPSApps\myVFPApp \Data’,
=3 customers.DEF Microsoft Visual FoxPro Table 7/15/2006 12:00 FM 26,257 SWFox2006\WFPIApps'myVFPApp\Datal
_imyDatabase.DBC Microsoft Visual FoxPro Database Container 7/15/2008 12:05PM 4,343 SWFox2006\WFP9Apps\myWFPApp\Datal
i"myDatabase.D(—r Microsoft Visual FoxPro Database Container 7/15/2006 12:05 FM 960 SWFox2006\WFP3Apps\myVFRApp\Data’,
EmyDatabase.DCX Paint Shop Pro 7 Image 7/15/2006 12:05 PM 4,608 SWFox2006\WFPSApps'\myVFPApp\Datal
|'_§Q myvfpapp.chm Compiled HTML Help file 7/15/2006 11:53 AM 13,113 SWFox2006\WFP3Apps \myVFPApp Help',
';j rptCustomers. frt Microsoft Visual FoxPro Report 7/15/20068 12:02PM 5,568 SWFox2006\WFPIApps'\myVFPApp\Reportsh
iﬂ rptCustomers. frx Microsoft Visual FoxPro Report 7/15/2006 12:02 PM 12,315 SWFox2006\WFP3Apps\myVFPApp \Reports),
Selected 0 files, 0 bytes Total 11 files, 122KB a0

Figure 6. Full path information is stored when the zip archive is created using the syntax in Listing 3.

What is needed is relative path info in the zip file, so the files end up in the same sub-directories
relative to the root of the zip file asthey are in relative to the root of the development (source)
and distribution (target) directories.

The WinZip Command Line Add-On WZZIP.EXE is more powerful than the built-in command
line interface. Among other things it has both —p (relative path) and —P (full path) options. The
relative path option sounds promising, but unfortunately it only works the way we want it to
when used in conjunction with the — option to recursively include files from sub-directories.
Using the — option isn’t feasible here because we do not want to pull in dl the files from dl the
sub-directories, but only the files we' ve specified in our list of filesin myVFPApp_FileList.txt. So
up to this point we're still out of luck with WinZip.

There is a solution, though. WinZip 10.0 has a new feature called Data Backup Jobs. Jobs can be
configured to select individual files and to store their relative path information. This new jobs
feature isthe only way I’ ve found to accomplish the relative path configuration we need using
WinZip. The jobs feature is available only in the Pro version of WinZip 10.0.

Creating a backup job isrelatively straightforward, and there’s a jobs wizard to help you out.
Using the wizard is self-explanatory, so the only thing | want to point out is where you specify
you want to store relative path information. Thisis donein step 3 of the wizard, asillustrated in
Figure 7. This step is the same whether you' re creating a new job or editing an existing one.

© 2006 Rick Borup
Page 17 of 43

Automating the Build

Edit Job [Step 3 of 6] - Specify Job Options [my¥FPApp_Update_ wif]

Specify additional options for your job, then click Next

—Falder info—————— ~ Compression

= Mone = Mawimum [PPRd)

%' Relative " Maximum [bzip2)

" Ful = Maximum [enhanced deflate)
: " b azimum [portable]

— Paszworddencyption ~ MNormal

& Nong " Fast -

= Save with job ¢ Super fast

= azk when job runs ™ No compression

Edit settings. . |

Zip File Span and Split Options... I

Finizh |

Figure 7: Specify you want to save relative path information under Folder Info in step 3 of the WinZip
jobs wizard.

Cloze | Help | < Back

When you run the backup job, the resulting zip file contains the files you selected plus their
relative path, as shown in Figure 8. This gives us what we need to update the deployment
directory using Beyond Compare.

!'E]WinZip [Evaluation ¥ersion] - my¥FPApp_Update.zip
File Actionz View Job: Optionz Help Buy Mowl
] = i 55 o & El = T
[ew Open Favorites: Add E utract Ehizrypk Wiew CheckOut Wizard Wiew Shle
Mame | Type | Madified | Size | Ratio [Packed | Path |
| Application 02/08/2006 10.35 AM 24,712 B3% 16242
@ License.rtf Rich Text For... 08/03/2006 3:40 P 7h47 F0E O 2261
_5 Feadme. txt Feadme Doc... 01/31/2004 703 P ar 3% 36
E.I cuztomers, DEF DEF File 071542006 12:00 P 26,287 T2k 7441 Datah
E.I cugtomers, COX LD File 07242003 1216 P 16896 V3% 4622 Datah
E.| rap0 atabase DBC DBLC File 07 A15/2006 12:05 PM 4348 90% 443 Data’
E| rp0ratabasze DCT DCT File 07 A5/2006 12:05 PM 960 93% E5 Data
E iyl atabase. D Paint Shop P... 07/15/2006 12:05 P 4608 90 472 Datah
@ b efpapp.chm Compiled HT... 0O7A15/2006 11:53 AM 13113 B9% 5333 Helph
-E-:] rptCustomers. frt FRT File 07 A5/2006 12:02 PH BAEEE 91X 497 HReportsh
-Eﬁ rptCustomers. fra FR File 07A5/2006 12:02 PH 12,315 85% 1.798 Reportsh
Selected O files, O bytes Total 11 files, 124KB GJ

Figure 8: Using a WinZip 10.0 backup job enables you to store selected files with their relative path
information.

© 2006 Rick Borup
Page 18 of 43

Automating the Build

WinZip jobs are stored in text files with a.wjf file name extension. These are simple text files
structured alot like an INI file. Once you' ve created a job file using the wizard, you can edit it
with any text editor.

WinZip job files are normally stored in My Documents\My WinZip Files. If you need to make
minor changes to ajob, such as adding afile or two, you might find it easier to smply edit the .wjf
file directly rather than going back through the wizard. The .wjf file for the sample job I'm using
hereisshown in Listing 4.

Listing 4. A WinZip job is stored in a text file with a .wjf file name extension.

[version]
WF-versi on=1

[out put]
base=nyVFPApp_Updat e. zi p
baseappend=0

f ol der =C: \ SWFox2006\ Tenp\
f ol der append=0

| og=none

| ogf ol der =

| ogoverwrite=1

| ogt oj obf ol der =1

[options]

j obfl ags=0001
conpr essi on=0
span=1

split=0
splitunit=bytes
pwrode=0

crypt node=0

pat hnode=1

CdW it eSpeed=-1
CdFi nal i ze=1

[w zard]
UseVar s=0

[files]

0=FI - C: \ SWFox 2006\ VFP9Apps\ ny VFPApp\ nyvf papp. exe

1=FI - C: \ SWFox2006\ VFP9Apps\ myVFPApp\ | i cense. rtf

2=FI - C: \ SWFox2006\ VFP9Apps\ myVFPApp\ r eadne. t xt

3=FI - C: \ SWFox 2006\ VFP9Apps\ myVFPApp\ Dat a\ cust orer s. dbf

4=FI| - C: \ SWFox 2006\ VFP9Apps\ nyVFPApp\ Dat a\ cust oner s. cdx

5=FI - C: \ SWFox 2006\ VFP9Apps\ my VFPApp\ Dat a\ nydat abase. dbc

6=FI - C: \ SWFox2006\ VFP9Apps\ myVFPApp\ Dat a\ mydat abase. dct

7=FI - C: \ SWFox2006\ VFP9Apps\ myVFPApp\ Dat a\ mydat abase. dcx

8=FI - C: \ SWFox 2006\ VFP9Apps\ ny VFPApp\ Hel p\ nyvf papp. chm

9=FI - C: \ SWFox2006\ VFP9Apps\ myVFPApp\ Reports\rptcustomers. frt
10=FI - C: \ SWFox2006\ VFP9Apps\ my VFPApp\ Repor t s\ rpt custonmers. frx

[schedul €]
type=99

Once the WinZip job has been configured and stored as a .wjf file, the job can be run from within
WinZip itsdf or from the command line using the /autorunjobfile option as shown in Listing 5.
Path and file names that include spaces should be enclosed in quotes.

Listing 5. A WinZip job can be run from the command line using the /autorunjobfile option.

“c:\program fil es\w nzi p\w nzi p32. exe” /autorunjobfile nyVFPApp_Update.w f

© 2006 Rick Borup
Page 19 of 43

Automating the Build

Y ou can incorporate this command into a .bat or .cmd file to run the WinZip job as part of an
automated build process.

Automating PicoZip

PicoZip isafile compression utility from Acubix. PicoZip has the ability to create what it callsa
backup set, which isalist of selected files dong with the other attributes of the zip file you want
to create. Backup sets enable you to store relative path information in the zip file,

PicoZip includes atool for visually creating and editing backup sets. On the Backup Options page
of that tool, you can specify you want to store relative path information by choosing “Relative
Path” in the Store Path Info drop-down list, as shown in Figure 9.

&b Edit Backup Set ==

Backup Options | Backup Method || Files To Backup | Files to Exclude

Backup Set Name Archive Format

i FPApp_ SWwWFow2006 Zip Archive [* zip) w
Backup Dezcrption [Optional) Caompressian

myWFPApD for SWWFow 2006 Marmal bt
B ackup Archive File Mame Store Path Info

iy FPApD Siwhom2006 Relative Path v
Backup Storage Falder FPazzward

CASWF k20054 T emp =

Confirrnatior

Show confirmation after backup completed when run from:
Within Ficogip
[] Direct backup shortcut or command-line

Save H Cancel H Help

Figure 9. PicoZip comes with a tool to create backup sets. You can easily set it up to store relative path
information.

When running a PicoZip backup set as part of an automated build process, you may want to run it
without any user intervention required. To do so, unmark the “ Direct backup shortcut or
command line” check box under Show confirmation after backup completed when run from, as
illustrated in Figure 9. Otherwise, when the backup is complete PicoZip displays a confirmation
diaog the user must dispatch by clicking OK.

Selecting Relative Path in the Backup Options dialog produces a zip file that contains the files
selected for backup along with their path relative to the root directory, as shown in Figure 10.

© 2006 Rick Borup
Page 20 of 43

Automating the Build

& Acubix Picolip - C:\SWFox2006\Temp\myVFPApp_Update.zip

=/oes

_i" iyl atabasze DBC 7-15-2006 12:05 PM
_i] myl atabasze DCT 7-15-2006 12:05 PM
E iyl atabase DK 7-15-2006 12:05 PM

= customers. CO T12-2003 1216 PM
= customers. DBF 7-15-2006 12:00 P
@ mywfpapp.chm 7-15-2006 11:53 AM
rptCustomers. fra 7-15-2006 12:02 P
rptCuztomers. fit 7-15-2006 12:02 PM

Mew Open Cloze Eutract Add
File Mame Date

1 myvfpapp exe 8-8-2006 10:35 Ak

EIJ Licenze. rtf 8-3-2006 3:40 P

[Z] readme bt 1-31-2004 7:03 P

File Edit WView Actions Favorites Tools Options Help

@R W@ E A W

Wiew CheckOut

Packed
16313
2264
36
453
B4
47
4635
7aRZ
5285
183
a1

Unpacked
KLl
TR
ar
4348
9e0
4603
16336
26257
13113
1235
alaa

Wizard
Fi atio
3%

70

W0 o - e WD D WD
= 0 O = WD O W
L T T L

Canfig Exit
Folder

Dratah,
Dratah,
Dratah,
Dratah,
Diatah,
Help"
Reportsh
R eportsh,

5 = zr PESEEEE-: 11fles Packed: 0.04ME Unpacked: 0.12 MB

Figure 10: PicoZip stores the selected Files with their relative path information.

PicoZip backup sets are stored as simple text files with a .zfb file name extension. These files ook
alot like INI files, and because they are smple text files they can be edited with any text editor.
These files are normaly stored in C:\Program Files\PicoZip\Backups\. The .zfb file for the sample

backup set isshown in Listing 6.

Listing 6. The PicoZip backup set file to create a zip archive of the distributable files for the sample

application myVFPApp.

BackupSet Name=nyVFPApp_SWo0x2006
Descri pti on=nyVFPApp for SWox 2006
BackupFol der =C: \ SWFox2006\ Tenp
BackupFi | ename=nyVFPApp_SWo0x2006
ArcType=6

Conpr essi on=1

St or ePat hl nf 0=0

Passwor d=

Conf i r mNor mal =1

Conf i r mConmandLi ne=0

Ski pReadOnl y=0

Ski pHi dden=0

Ski pSyst em=0

BackupMet hod=1

Gener ations=3

I ncr enent al Modi fi ed=0

[Fil esl nBackupSet]

C: \ SWFox 2006\ VFP9Apps\ my VFPApp\ nyvf papp. EXE
C: \ SWFox 2006\ VFP9Apps\ myVFPApp\ Li cense. rtf
C: \ SWFox2006\ VFP9Apps\ my VFPApp\ r eadre. t xt

C: \ SWFox 2006\ VFP9Apps\ my VFPApp\ Dat a\ cust ormer s. CDX
C: \ SWFox2006\ VFP9Apps\ my VFPApp\ Dat a\ cust onmer s. DBF

© 2006 Rick Borup
Page 21 of 43

Automating the Build

C: \ SWFox2006\ VFP9Apps\ my VFPApp\ Dat a\ nyDat abase. DCX

C: \ SWFox2006\ VFP9Apps\ my VFPApp\ Dat a\ myDat abase. DBC

C: \ SWFox2006\ VFP9Apps\ my VFPApp\ Dat a\ nyDat abase. DCT

C:. \ SWFox2006\ VFP9Apps\ my VFPApp\ Hel p\ myvf papp. chm

C: \ SWFox2006\ VFP9Apps\ my VFPApp\ Repor t s\ r pt Cust oners. frx
C: \ SWFox2006\ VFP9Apps\ myVFPApp\ Report s\ rpt Custormers. frt

[Fol der sl nBackupSet]

[Excl udelLi st]

Thisfileisinitially created by PicoZip when you create a Backup Set from within the program
itself, but once created the file can be edited with any text editor, making it easy to add or remove

files when necessary.

Once a backup set has been configured and stored as a .zfb file, you can run it from within
PicoZip or you run it from the command line using the —B option, as shown in Listing 7. Path and
file names that include spaces should be enclosed in quotes.

Listing 7. Run PicoZip with the —B option and pass the name of the backup set as a parameter.

"C:\ Program Fi | es\ Pi coZi p\ Pi coZi p. exe" -B nyVFPApp_SWF0x2006. zf b

Y ou can incorporate this command into a .bat or .cmd file to run the PicoZip backup job as part
of an automated build process.

Automating BeyondCompare

Once you' ve configured afolder comparison that way you want it in Beyond Compare, you can
save it as a session. Sessions can be re-opened and re-used as often as needed.

Figure 4 shows a session named myVFPApp — Update install from ZIP Backup, which | created
for the sample application. It compares the contents of a zip file named myVFPApp_Update.zip to
the deployment folder VFPODIstrib\myVFPApp in preparation for copying the newer files from
one to the other.

Y ou can open a session by choosing it from the list of available sessionsin Beyond Compare, or
you can automate the process using a command line parameter. Listing 8 shows the command
line syntax for opening the sample session myVFPApp — Update install from ZIP Backup. As
always, strings that include spaces should be enclosed in quotes.

Listing 8. You can run Beyond Compare from the command line and open a session automatically.

"C:\ Program Fi | es\ Beyond Conpare 2\bc2.exe" "nmyVFPApp - Update Install from ZI P Backup"

This opens the session in the Beyond Compare window, as shown in Figure 4. If you want visua
confirmation of what's new in the zip file before copying files to the deployment directory, thisis
the way to go.

On the other hand, if you're interested in silent automation Beyond Compare also offers a
scripting language. Using a script it’s possible to update one directory with newer filesin the
other without the Beyond Compare user interface. | won't go into details here; the Beyond
Compare Help file has information and examples on how to do this.

© 2006 Rick Borup
Page 22 of 43

Automating the Build

As of v2.4 Build 240 (March, 2006) BeyondCompare supports check in and check out with most
version control systems. If you use version controls software, this has the potential to significantly
extend the usefulness of Beyond Compare in an automated build process.

Building the deployment package

Once the deployment directory is up to date with the latest files for the new release, you' re ready
to build the deployment package. Of course you have your choice of setup authoring tools here,
but I’ m going to discuss two of the popular ones used by VFP developers, Inno Setup and
InstallShield Express.

Automating Inno Setup

L ots has been written about how to use Inno Setup to deploy VFP apps and thisis not the place
to reproduce any of that. If you're interested in but not familiar with Inno Setup, one place to
start is the VFP devel opers page of my website at www.ita-software.com/foxpage.aspx, where
you'll find severa white papers and a videocast on the subject. A Google search for “Inno Setup
AND FoxPro” turns up many other valuable references, too. On the other hand, if you' re not
interested in Inno Setup at all you can skip this section and go directly to the next section on
Automating InstallShield.

If you use Inno Setup to build the deployment package for your VFP app, there are at least three
ways to automate that process from the command line. In all three cases it’s assumed you have
the Inno Setup script (.issfile) for the application aready written.

The first way to automate Inno Setup is to launch the compiler directly and pass the name of the
script you want to compile, as shown in Listing 9.° Path and file names that include spaces should
be enclosed in quotes.

Listing 9. Run the Inno Setup compiler with the /cc option and pass the name of the script file.
"C:\Program Fil es\I nno Setup 5\compil 32. exe" /cc "C: \ SWox2006\ VFPIDI st ri b\ nyVFPApp\ myVFPApp. i ss"
Running the compiler in this way opens the Inno Setup user interface window for the duration of

the build. The script is not opened for editing but compiler output messages are displayed as the
build progresses. The compiler returns an exit code of O if the build was successful.

An dternative method is to use the Inno Setup console mode compiler issc.exe. The syntax for
the sample build using this method is shown in Listing 10.

Listing 10. Run the Inno Setup console mode compiler with the /Q option and pass the name of the
script file.

"C:\Program Fil es\lInno Setup 5\iscc.exe" /Q "C:\SWox2006\ VFPODi st ri b\ myVFPApp\ nyVFPApp. i ss"

® All Inno Setup examplesin this paper are based on version 5.1.7, which is the |atest release as of this writing.

© 2006 Rick Borup
Page 23 of 43

www.ita-software.com/foxpage.aspx

Automating the Build

The /Q parameter is optional. It tells the compiler to run in quiet mode, displaying only error
messages if any occur. Other parameters can be passed to specify an output path and file name, if
you want to override the ones specified in the script. See the Inno Setup Help file for more
information.

Running the console mode compiler with the /Q option results in a completely silent build. No
user interface window is opened and no user response is required unless there is an error.

Many developers who use Inno Setup aso use the companion tool 1STool. ISTool provides a
graphical user interface to Inno Setup scripts, and it can run the Inno Setup compiler directly from
within its own window.

| STool can aso be automated. One way isto open the ISTool user interface with the script
loaded for editing. Thisis useful if you want to update the script before compiling, for example to
increment the version number, add or change afile reference, etc. Listing 11 shows the syntax for
doing this from a command line.

Listing 11. Run ISTool and pass the name of the script file to open for editing.

"C:\Program Fi |l es\| STool 4\istool.exe" "C: \SWo0ox2006\ VFPODi stri b\ myVFPApp\ nyVFPApp. i ss"

ISTool is a separate product from a different developer, but a new release of ISTool is generally
available shortly after each new release of Inno Setup. Even though ISTool is currently at version
5.1.6, it still installs to the ISTool 4 directory under Program Files, as shown in Listing 8.

Another way to automate | STool is to pass the —compile parameter, which tells ISTool to
immediately compile the script using the Inno Setup compiler. The syntax for thisisgivenin
Listing 12.

Listing 12. Run ISTool and pass the —compile parameter as well as the name of the script file.

"C:\Program Fi | es\| STool 4\istool.exe" -conpile "C: \SWo0x2006\ VFPIDi st ri b\ nyVFPApp\ myVFPApp. i ss"

When run in this manner, ISTool opens the script in its editing window and immediately launches
the Inno Setup compiler. Although the script is visible in the editing window, you do not have a
chance to edit it because compilation begins right away. Compiler output is displayed in a child
window, the same as if you' d launched the compiler manually from within ISTool. Assuming
there were no errors, the | STool window is automatically closed when compilation is complete.

Automating InstallShield

Ever since VFP 7.0, Visual FoxPro has shipped with alimited edition of InstallShield Express
named Install Shield Express - Visual FoxPro Limited Edition, or ISX VFP LE for short.

While ISX VFP LE worksfine asfar asit goes, it lacks several features found in the full versions
of Install Shield Express. Because of this, many developers including myself use the more current
fully featured versions of InstallShield Express. | no longer have ISX VFP LE installed on my

© 2006 Rick Borup
Page 24 of 43

Automating the Build

machine, but | do still have the full version of InstallShield Express 5.0. The examples | usein this
paper are based on that version, which is as close as | can come to the version that ships with VFP
9.0. Asfar as| know these examples also work with the version of ISX VFP LE that ships with
VFP 9.0, and quite possibly with older versions as well.

Automating InstallShield Express is simply a matter of being able to tell it what you want it to do
from the command line. Install Shield Express 5.0 storesits project files with a .ise file name
extension. The examples that follow assume you have already built the Install Shield Express
project for the application.

To launch Install Shield Express and open an existing project for editing, you can use the syntax
shownin Listing 13.

Listing 13. Launch InstallShield Express and pass the name of the project file to open for editing.

"C:\Program Fi |l es\ | nstal | Shi el d\Express 5.0\iside.exe" "C:\SWox2006\Install Shield Express
Pr oj ect s\ myVFPApp. i se"

If the project file requires no editing, you can compileit directly as shownin Listing 14.

Listing 14. Launch InstallShield Express and pass the name of the project file to compile.

"C:\Program Fi |l es\ | nstal | Shi el d\ Express 5.0\system | sExpCndBl d. exe" -p
" C:\ SWFox2006\ I nst al | Shi el d Express Projects\nmyVFPApp.ise" -r Singlelnage -c COW -e y

Note that several parameters are passed to InstallShield Expressin this command string. The -
parameter tells ISX which project file to build. The — parameter specifies the desired release type,
while the —c parameter is the compression option. Passing 'y’ as the —e parameter tells ISX you
want to create a setup.exe file. These and the other available parameters are documented in the
Command-Line Build Parameters topic of the ISX Helpfile.

Running the build using the syntax in Listing 11 does not open the InstallShield Express IDE, but
it does display the build progress in the command window. If you don’t want this you can achieve
adlent build by adding the —s parameter, as shown in Listing 15.

Listing 15. Perform a silent build by passing the —s parameter.

"C:\Program Fi |l es\ | nstal | Shi el d\ Express 5.0\system | sExpCndBl d. exe" -p
" C:\ SWFox2006\ I nst al | Shi el d Express Projects\myVFPApp.ise" -r Singlelmage -c COW -s -e y

Asyou can see, the command line can get a bit long. To alleviate this, InstallShield Express
alows the build options to be stored in an INI file, which is passed to ISX using the — parameter.
Some devel opers may find this more convenient because an INI file is easy to edit and the
command line required to run the build is shorter.

The build options used in Listing 15 can be incorporated into an INI file like this:

Listing 16. Build options can be stored in an INI file.

[Project]
Name="C: \ SWFox2006\ | nst al | Shi el d Express Proj ect s\ myVFPApp.ise"
Pr oduct =nyVFPApp

© 2006 Rick Borup
Page 25 of 43

Automating the Build

Bui | dLabel =Expr ess

[Rel ease]

Conf i gur at i on=COWP
Name=Si ngl el mage
Set upEXE=yY

[Mode]
Si | ent =yes

If the INI filein Listing 16 is saved as myVFPApp_ISE.ini, then the command line to run the
build isas shownin Listing 17.

Listing 17. InstallShield Express can read its build options from an INI file.

"C:\Program Fi |l es\ | nstal | Shi el d\ Express 5.0\system | sExpCndBl d. exe" -i
" C:\ SWFox2006\ Sessi ons\ Bui | d\ nyVFPApp_| SE. i ni "

Putting it all together

Thefinal step in creating a semi-automated build is to create a single script to run each of the
steps in the correct sequence. One easy way to do thisisto use a Windows batch (.bat) or
command (.cmd) file.

The objective is to encapsul ate the steps required to perform the build into a single file so that
running that file launches each of the required steps in the correct sequence. As you' ve seen, there
are often several different ways to run each step, so you need to decide which alternatives you
want to use for your own build process. For the example I’'m using here, I'll choose to run
PicoZip using the command from Listing 5, Beyond Compare using the command from Listing 6,
and | STool using the command shown in Listing 8 (which gives me a chance to edit the script
before compilation). Adding afew comments and a bit of user feedback along the way resultsin
thefile shownin Listing 18.

Listing 18. A Windows .cmd file with the desired commands for a semi-automated build.

@cho off
REM Bui | d the depl oynent package for myVFPApp.

echo Step 1 - Create zip backup of updated files
"C:\ Program Fi | es\ Pi coZi p\ Pi coZi p. exe" -B "C:\ SWFox2006\ Sessi ons\ Bui | d\ myVFPApp_Updat e. zf b"
echo Step 1 conplete

echo Step 2 - Update the deploynment directory
"C:\ Program Fi | es\ Beyond Conpare 2\bc2.exe" "nmyVFPApp - Update Install from ZI P Backup"
echo Step 2 conplete

echo Step 3 - Edit the setup script using |ISTool, then conpile manually fromthe |DE.
"C:\Program Fi |l es\| STool 4\istool.exe" "C: \SWox2006\ VFPODi stri b\ myVFPApp\ nyVFPApp. i ss"
echo Step 3 conplete

REM Vi sual |y confirmthe presence, size, and datetime stanp of the setup package.
DI R " C:\ SWFox2006\ VFPIDi st ri b\ myVFPApp\ Qut put\ *. exe"

echo Done!

If your memory is bad or you just don’t want to be bothered with having to remember to run the
Inno Setup compiler from within 1STool, you can add aline in step 3 to run the compiler after

© 2006 Rick Borup
Page 26 of 43

Automating the Build

you close ISTool. Use the command from Listing 6 or Listing 9 to do this. The worst case isthe
compile will run twice, which doesn’t hurt anything but is alot better than forgetting to run it at
al!

Save the commands shown in Listing 15 as Build_myVFPApp.cmd or another name of your
choosing, and you can now launch your entire build process smply by double-clicking the .cmd
file in Windows Explorer.

This beginsto look awhole lot like a fully automated build. I'd still consider it a semi-automated
build because it requires a certain amount of manua involvement along the way, as well as for
other reasons, but it still represents a significant improvement over a manua build.

Fully Automated builds

A fully automated build is probably the Holy Grail of build processes, and, like finding the
putative Holy Grail itself, may be impossible to achieve. Nonetheless it’s certainly possible to
attain significant improvement over a manual or even a semi-automated build process using
specia purpose software designed specifically to fully automate the build.

A fully automated build displays the following characteristics:
Each step is fully scripted and automated
The entire build processis defined in one place
One touch launches the entire process
Each step is dependent on the successful completion of the previous one
Thereisaprovision for handling errors that may occur during the build process
Littleif any user interaction is required

A log is generated each time the build processis run

Pros and cons

On the positive side, a fully automated build offers several advantages. Because it provides a
totally hands-off build process, it presents the least opportunities for error once the scripts have
been tested and debugged. Because specia purpose software is generaly used, all of the stepsin a
fully automated build are usualy defined in one place, namely the file used to run the build.

The software used to accomplish afully automated build generally offers a higher degree of
integration with other parts of the build process than might otherwise be achieved. This includes
integration with version control software, integration with source code compilers, and integration
with setup authoring tools.

Software for running fully automated builds can also create alog of what was done each time the
build is run, and may be able to generate automated notification to team members. They also may
offer error handling and the ability to specify actions to be taken if and when an error occurs
somewhere in the build process.

© 2006 Rick Borup
Page 27 of 43

Automating the Build

Setting up afully automated build may initialy be more complicated and time consuming than
setting up a manual or semi-automated build, but once configured and running smoothly you get
some of that time back each and every time you run the build.

Tools

A fully automated build is amost certainly going to require special purpose software designed
specifically for that purpose. Here you are confronted with the old build or buy decision. While
writing your own is certainly possible—you are a developer, after all—it’s no trivia task and
would clearly take alot of time. On the other hand, professional tools are expensive relative to the
cost of the general purpose utilities discussed earlier. What' s the best way to go?

Homegrown tools

If you're averse to spending money for a professional tool, you may want to consider rolling your
own build automation tool. If you' re adept at writing command or script files you could probably
come up with something suitable, at least for a simple build. More likely, as a devel oper, you
might look at your favorite tool (VFP, of course!) and consider how much work it would be to
write an app to automate your build process.

It'sfeasible, but isit smart? Both of these approaches may have merit, but like so many other
things the question probably ought to be: Why would | want to take time away from billable hours
to build something somebody else has already built and which | can buy for areasonable price?
The two professional tools | describe here each cost afew hundred dollars. Divide that by your
billing rate. Could you write an equivalent tool in that number of hours? | know | couldn’t.

The purpose of saying all thisis not to discourage you from coming up with your own solution or
to diminish the potential value of a solution you might write for yourself, but rather to suggest
that a good 3™ party tool is usually well worth its price when considered in the greater scheme of
things.

Professional tools

The two professional tools | discuss here are Final Builder from V Soft Technologies Pty Ltd and
Visua Build Pro from Kinook Software, Inc. Both are specia purpose software packages
designed to help fully automate the build process. Both are also full featured applications in their
own right, with enough features and capabilitiesto fill a session or more likely severa sessions of
their own.

The intent of this section is therefore not to describe these tools in depth but to introduce you to
them in the context of our smplistic little sample application, and hopefully by doing so to give
you enough information to evaluate the potential these tools might offer you in your own work.

Final Builder

The descriptions and screenshots in this paper are from Final Builder Professional Edition version
4.2.0.276, which is the latest version available as of thiswriting. Y ou can download an evaluation
copy of Fina Builder from the publisher’ s website at www.finalbuilder.com.

© 2006 Rick Borup
Page 28 of 43

www.finalbuilder.com

Automating the Build

Y ou begin by creating a Final Builder project and populating it with actions. Actions correspond
the stepsinvolved in your build process. If you' ve never automated your build or even given it
much thought, you may at first by stymied by this concept. If so it’s probably because you've
never stopped to consider, much less to write down, the steps you actually perform to create a
build. If you've read the first part of this paper, though, you'll see that actionsin a Final Builder
project correspond directly to the steps enumerated in the examples aready given.

Assuming the build process to be automated with Final Builder follows the same three steps |’ ve
been describing all aong—~build the VFP EXE, update the deployment directory, and build the
deployment package—you probably want Final Builder to take over starting with the second
step.” As a starting point, we can set up actions in the Final Builder project to accomplish the
same steps we automated from the command line in the previous section of this paper.

The Fina Builder IDE has two views, Design and Build Summary. Y ou create and edit your
project from the Design view. Figure 11 shows a sample project open in the Design view.

[E] myVFPApp_1.fbp4 - FinalBuilder 4 (=)<
: File Edit Project Actions Run Tools \iew Wizards Help
=N N PSR & ™ P RD R ko BE M i @ E e i
£ Project | & Action Types »| |[E] man | [Z onFaiure g
: Filter - Description Enabled Ignore Failure Status §'
: — =
Frequently Used 3 i 1) Buid myVFPApp for SWFox2006 =
* = c
E; Action Group ! %
= = Gather distributable files from development directory into a Zip archive O =
¥ = =
§ Execute Program & E
D c 5 ¢ Execute Program - PicoZip D =
S Dmmen.)) = E= Update the deployment directory from the zip fle O 3
9 InstallShield Windows Installer Project : e]
[Muiti Question = E= Build deployment package with Inno Setup O
i = #* Execute Program - Edit Inno Setup Script using 15Tool O
isc
- ﬁa Build Inno Setup Script [C:\SWFox2006\WFPIDistrib\myVFPApDim... O
Flow Control ¥ = EE Build deployment package using InstallShield Express |
Execute Program - Edit InstalShield Express Project O
2
Variables e # Build single Image Setup.EXE from InstaliShield Express project us... O
Property Sets ¥ = E= Creats HTML version of build log O
!ﬁ Export Log [C:\SWFox2006\Sessions \Build \FinalBuilderLog.html] O
File Sets ¥
Compilers ¥
et Tools ¥
Build Tools ¥
Testing Tools ¥ v
@ Quick Help Build Log |~ [ElBuid History | brndWatches 7| Script Editor | [Action Information
i [Live Log View Show Full Log - 5i Show all Error Actions & Show Ignored Errors | Search:
Message Date Start Time End Time Run Time Status
4.2.0.276 Modified il Stopped

Figure 11: A simple project open in Final Builder. Note the Design tab is selected on the far right.

" I’'ve already described the reasons you probably want to build the VFP EXE manually from within the VFP IDE.

© 2006 Rick Borup
Page 29 of 43

Automating the Build

The Design view consists of three panels. In the left-most panel, the list of Action Typesis
selected. To build your project, you add actions to the Main panel from the Action Typeslist.
Final Builder remembers the actions you’ ve used most frequently and adds them to the Frequently
Used list, which you can see is expanded in Figure 11.

You can also seein Figure 11 that each action in the Main panel has an Enable check box.
Marking or unmarking these check boxes alows you to control which actions are executed when
the build is run. One use for thisisin testing, where you might want to run only a subset of the
actions. There are aso icons on the toolbar that enable you to run selected portions of the build.

Another use for the Enabled check boxesisillustrated in Figure 11, where I’ ve set up action
groups to build the deployment package using both Inno Setup and InstallShield Express. It's
unlikely I'd do both is area deployment scenario, but it’s useful to have both available for
demonstration purposes. Rather than having to maintain two copies of the project, | can simply
mark and unmark to desired actions to use one setup authoring tool or the other, or both.

The action type | used most frequently, at least at first, is the Execute Program action. This action
lets you launch an external program in the same way you would run it manually or from a
command file. The Execute Program action is therefore an ideal way to convert the commands we
built for use from the command line in the previous section.

Double clicking on an action in the Main panel opensits properties sheet. Figure 12 shows the
properties sheet for the Beyond Compare step in our build process. Note the syntax for launching
Beyond Compare here isidentical to the command used in the earlier example but broken into
two parts, the command itself and the parameter.

© 2006 Rick Borup
Page 30 of 43

Automating the Build

Execute Program
Properties | Program
K Program File ,»_?.:
"C:\Program Files\Beyond Compare 2'bc2.exe” fs]
2 Options

Parameters ; | “myVFPApp - Update Install from ZIF Backup”

StartIn:]

Fe

Min Success Code @ |0 e

Wait For Completion
[Hide window
Log Qutput

o] [| []

Figure 12: In the Execute Program action dialog you specify the program to be run and any parameters
to be passed to it.

In the lower portion of the window shown in Figure 12, note the provision for specifying a
minimum success code. Thisis the return value Final Builder will look for as indication the
program completed successfully. Usudly this will be zero, but you can change it if necessary.

Also note the three check boxes below the minimum success code. In aimost all cases you will
want to wait on completion of any action before continuing with the next, so normdly you'll leave
the Wait For Completion check box marked.

The Hide Window check box enables you to run control whether the program should be run with
or without avisible window. For programs that don’'t require user interaction you'll probably
want to leave this check box marked. On the other hand, if the program does require user
interaction then be sure to unmark the Hide Window check box or the build will hang indefinitely
waiting on a user response to an invisble window! In this example we want the Beyond Compare
window to be visible so we can visually compare the two sides before copying the file(s) to the
deployment directory, and the action won'’t terminate until we close the Beyond Compare
window, so we unmark the Hide Window check box.

If Log Output is marked, Final Builder will capture all console output from the program being run
and write it to the Final Builder log. For example, the output from the Inno Setup compiler can be
captured to the Final Builder log in this manner. You'll usualy want to leave this check box
marked.

One of the nice things about Final Builder isits awareness of and ability to integrate with awide
range of other software. Thisincludes but is by no means limited to utilities such as Beyond

© 2006 Rick Borup
Page 31 of 43

Automating the Build

Compare, setup authoring tools such as Inno Setup, InstallShield, and many others, and a wide
range of version control software packages.

The pre-configured actions for each of these software package are available in the Action list.
Some, like the version control software, are listed individually. Others, like the setup authoring
tools, are part of agroup. The actions for setup authoring tool, for example, are grouped under
Install Buildersin the Action list

Look at Figure 11 and find the action that runs the Inno Setup compiler. You'll noticeit’s not set
up as an Execute Program action but rather as a Build Inno Setup Script action. Thisis possible
because Inno Setup is one of the install builders that Final Builder “knows’ about and provides a
pre-configured action for. Figure 13 shows the configuration window for the Build Inno Setup
Script action.

Build Inno Setup Script
Properties | Project
B Project File @
C:\SWFox2006 \WFPSDistrib\myVFPApp\myVFPAPD.iss []

Show Progress {Inno 4. 1.6 or higher)

(7] Inno Setup Version

Oz.x C}B.x O4.x @'S.x

[CK l l Cancel l [Help l

Figure 13. Final Builder “knows” about Inno Setup and provides a customized dialog for the Build Inno
Setup Script action.

Note that version 5.x is marked, indicating we want to use Inno Setup version 5. If Inno Setup is
ingtalled on your machine when you install Final Builder, Final Builder should recognize and
locate it automatically. If not, you can specify the location of Inno Setup manualy viathe Final
Builder Options dialog. Figure 14 shows the Options diaog for configuring Final Builder to be
aware of Inno Setup. Similar Options dialogs exist for the other software Final Builder can be
made aware of .

© 2006 Rick Borup
Page 32 of 43

Automating the Build

FinalBuilder Options

FinalBuild ¥
inaButider hd L Inno Compiler Locations ﬁé

.NET Tools

<«

Inno 2 Compiler DLL Location :

Other C:'Program Files\ISTool SISCmplr.dil fs]

<«

Build Tools Inno 3 Compiler DLL Location :

<«

<«

Help Compilers
Inno 4 Compiler DLL Location :

<«

Archivers

; ®
Version Control System (¥ Inno 5 Compiler DLL Location :

C:'Program Files\Inno Setup 5\ISCmplr.dil fs]

¥

Install Builders
GP-Install

f’f} MullsoftInstaller
] Installanare Omnozx Olnno 3.x Olnno 4.x (® Inno 5.
w3 [nstallanywhere

w Wise Installer

#3 Inno Setup

&) Instalshisld

iﬁ;’j Advanced Installer

& Wi

Compilers ¥

(7] Default Inno Setup Version

Source Code Tools ¥

Licensing * [oK l [Cancel] [Help]

Internet ¥ >

Figure 14. The Options dialog is where you specify the location and attributes of other software
packages Final Builder is aware of.

Final Builder offers a number of ways to interact with the developer during the build process. For
example, you can make it ask a question. This action and otherslike it are found under the
Interactive action types.

In out example, one question we might want to ask is whether to use Inno Setup or Install Shield.
Thisis easily done by adding an Ask Question action before each of these steps and making the
related actions dependent on the answer. Figure 15 shows a modified Fina Builder project with
these questions in place, as indicated by the shaded lines in the Main panel.

© 2006 Rick Borup
Page 33 of 43

Automating the Build

[E] myVFPAPp_2.bp4 - FinalBuilder 4 (=)<
: File Edit Project Actions Run Tools View \Wizards Help
= = I RH B4 Sl ol ¢ H = S S HEEDEe |
4 Project | Action Types > E Main E OnFailure E
* Filter - Description Enabled Ignore Failure Status I;'
2 . =
Testing Tools ¥ A i
I i) Build myVFPApp for SWFox2006 - Example 2 =
Help Compilers ¥ = e
Files & Directories v = E; Gather distributable files from development directory into a Zip archive = %’
#% Execute Program - PicoZip O &
Interactive E = E= Update the deployment directory from the Zip file O 3
© Ask Question f Execute Program - BeyondCompare D
X = E= Build deployment package O
[Prompt for Variables =
& wuis . &) Ask Question []
HEetE o.n) - E= Build deployment package with Inno Setup | 8
Prompt for File or Directory # Execute Program - Edit Inno Setup Script using ISTool O
0 beep @7 Build Inno Setup Script [C:\8WFax2008\WFPADistribimyVEPAD. .. O
[E5 Prompt for Variables (Enhanced) @ Ask Question []
essagebox =" E= Build deployment pa e using Ins ield Express
Message = Build d t TnstallShield £ L]
:@ InputBox # Execute Program - Edit InstaliShield Express Project O
Build Single Image Setup,EXE from InstallShield Express projec. .. O
Iterators ¥ = E= Create HTML version of build log O
Registry & Ini ¥ fﬁ Export Log [C:\SWFox2006\5essions \Build \FinalBuilderLog.html] O
Windows 05 ¥
Wait ¥
ha
) Quick Help Build Log |~ [E]Build History | kndWatches 7| Seript Editor [[Action Information
[] Live Log View Show Full Log - 5 Show all Error Actions - 23 Show Ignored Errors | Search:
Message Date Start Time End Time Run Time Status
4.2.0.276 [l Stopped

Figure 15: Final Builder can interact with the developer during the build process via the Ask Question
action.

In order to make this work, you need to set up a variable. Thisis atwo-step process. The first
step isto create a unique variable name and associate it with the answer to the Ask Question
action. Do this by opening the Ask Question action’s properties sheet and configuring it to put the
answer to the question in a variable named DoCompilelnno. Because it's a yes/no question,
DoCompilelnno is a Boolean value.

The second step is make execution of the Build deployment package with Inno Setup action
group dependent on the value of the DoCompilelnno variable. Do this by opening the action
group’ s properties sheet and setting the condition to DoCompilelnno.

Although they’re actually two separate steps, Figure 16 shows these two configuration dialogs
side by side for convenience.

© 2006 Rick Borup
Page 34 of 43

Automating the Build

Ask Question

Action Group

Properties | Ask Question

@_. Question

Do you want to build the deployment package using Inno Setup?

Options
Use "Yes™ and "No" instead of "OK" and "Cancel™
() Fail if "Cancel" or No™
() Fail if "OK” or "Yes™
(%) Put result in variable
DaoCompileInna v

1f the variable does not exist, it will be created

B2

I OK. l [Cancel] [

Properties

71 Action Description
Build deployment package with Inno Setup

Comment ;

Options

[¥] Action Enabled Pause after Run : Retry Attempts : Retry Pause @

0 3 |ms 03

[[1gnore Failure
Logging Options
D Suppress Log Messages
[Log to Variable
fb Execute Condition
Script Language : | VBScript A
Condition ¢ |DoCompileInno

i:“ Copyright
¥ pyria Copyright © 2000-2006 VSoft Technologies Pty Ltd

Condition must return a boolean value {True or False)
Condition syntax defined by script language

I OK I [Cancel] [

Figure 16: Use a variable to make an action group dependent on the answer to a question.

Doing it the way | just showed requires two questions, one for each install builder. Would you
prefer to ask the question only once and be able to capture both answers at the same time? Final
Builder’s Multi Question action can do that.

Configuring the Multi Question is similar to configuring the individual Ask Question actions,
except that you set up both questions and capture both answers in one dialog. Figure 17 shows

the Multi Question action’s properties sheet configured for our example.

Multi Question

Properties | Multi-Question

@_. Main Question

Which setup compiler{s) do you want to use today?

K Answers
Answer Text

Inno Setup

InstallShield Express

2 Options
Remember Last Used Settings

Set Boolean Variable Default

DoCompileInno [l

DoCompileInstallsk v

[]

w

3| E3|E3| ER|EF|

| | concel | | el |

Figure 17: Use the Multi Question action to ask two or more questions in the same dialog.

© 2006 Rick Borup
Page 35 of 43

Automating the Build

Figur e 18 shows the modified script after replacing the two individual Ask Question actions seen
in Figure 15 with a Multi Question action.

[E] myVFPAp_3.fbp4 - FinalBuilder 4 (=)<
: File Edit Project Actions Run Tools View \Wizards Help
{1 IRl Biiv H%X LB Bl bD b bE W i@ %W EEie |
4 Project | F Action Types r a Main ﬂ OnFailure Z
o
* Filter - Description Enabled Ignore Failure Status q
2 . =
Testing Tools ¥ A i
I i) Build myVFPApp for SWFox2006 - Example 3 =
Help Compilers ¥ = e
Files & Directories v = E; Gather distributable files from development directory into a Zip archive = %’
#% Execute Program - PicoZip O &
Interactive E = E= Update the deployment directory from the Zip file O 3
© Ask Question f Execute Program - BeyondCompare D
. = E= Build the deployment package O
[Prompt for Variables =
B mit . [] Multi Question []
HEetE o.n) - E= Build deployment package with Inno Setup | 8
Prompt for File or Directory # Execute Program - Edit Inno Setup Script using ISTool O
0 beep @7 Build Inno Setup Script [C:\8WFax2008\WFPADistrib\myVFPAD. .. O
[E Prompt for Variables (Enhanced) - = Build deployment package using InstallShield Express il l
¥ MessageBox # Execute Program - Edit InstaliShield Express Project O
:@ InputBox # Build Single Image Setup.EXE from InstallShield Express projec. .. O
= E; Create HTML version of build log O
Iterators ¥ fa Export Log [C:\SWFox2006\5essions \Build FinalBuilderLog.html] O
Registry & Ini ¥
Windows 05 ¥
Wait ¥
ha
) Quick Help Build Log |~ [E]Build History | kndWatches 7| Seript Editor [[Action Information
[] Live Log View Show Full Log - 5 Show all Error Actions - 23 Show Ignored Errors | Search:
Message Date Start Time: End Time Run Time Status
4.2.0.276 [l Stopped

Figure 18: Streamline the build by replacing the two individual Ask Question actions with one Multi
Question action.

One of Final Builder’s powerful featuresisits ability to create and use variables, making it
possible to construct a truly dynamic build process. Variables are categorized as Project, User,
System, or Environment. Final Builder comes with several predefined System and Environment
variables such as COMPUTERNAME, SYSDIR, APPDATA, HOMEPATH, ProgramFiles, and
CommonProgramFiles, just to pick afew at random. Y ou can create, modify and use your own
Project and User variables. System and Environment variables can be referenced but not modified.

Once your Fina Builder project is configured the way you want it, you can run it by pressing F9
or clicking the Run button on the toolbar. Running the build process shifts focus to the Build
Summary view in the Final Builder IDE. Asit runs, progressis displayed in the Build Summary
view. Figure 19 captures the sample project part way through the build process.

© 2006 Rick Borup
Page 36 of 43

Automating the Build

[E] myVFPAp_3.fbp4 - FinalBuilder 4 (=)<
: File Edit Project Actions Run Tools View Wizards Help
i i ™ O i «BEEO |
Build Running Current ActionList =4
o) o,
Start time: 14:04:33 S5 LRSS g g
fun time: 00:00:01 Start ime: 140438
CT Run time: 00:00:01 ®
£
O stop Current Running Actions -
[] show detailed action output §
Estimated Progress E
| i Action Mame: Execute Program =
i Description: Execute Program - PicoZip
Action Statistics Starttime: 12:04:33 [
Total: 1 Run time: 00:00:01:829
Successful: 1
Skipped: a
Error: 0
Ignored: 0
Recent Actions
Run Time Action
v 2 00:00:00:000 Gather distributable files fr...
) Quick Help Build Log * [E]Build History | kndWatches [Action Information
& Clear Build History =3 Pack log file
Build Date Start Time End Time Run Time Status
myVFPApp_3.fop4 3/5/2006 14:03:22:303 140401000 00:00:31:657 v
4.2.0.276 [l Running

Figure 19: The Build Summary view displays progress for each step as the build process runs.

When complete, the Build Summary view shows a success or failure indication. Figur e 20 shows
the result of a successful build. The Action Statistics section summarizes the number of actions
that were run successfully, skipped, or had errors. The individual actions and the time they took
to run are listed under Recent Actions.

© 2006 Rick Borup
Page 37 of 43

Automating the Build

[E] myVFPAp_3.fbp4 - FinalBuilder 4 (=)<
: File Edit Project Actions Run Tools View \Wizards Help
H=N RN]V B [#E R by bR W ez ReaHC RE:
Build Successful Current ActionList 7
o o,
Start time: 14:03:29 ’;:”:ﬁ““: E
Run time: 00:00:32 e
Run time: =
E
Current Running Actions -
[] show detailed action output §
Estimated Progress 3
8
| =
Action Statistics
Total: 1
Successful: 8
Skipped: 2
Error: 0
Ignored: 0
Recent Actions
Run Time Action
\/3@ 00:00:00:109 Export Log [C:\SWFox200..,
\/FE 00:00:00:000 Create HTML version of bu...
}FE 00:00:00:000 Buid deployment package ...
}FE 00:00:00:453 Buid deployment package ...
[00:00:15:594 Multi Question
' B2 00:00:00:016 Buid the deployment pack. ..
\/:’\ 00:00:07:608 Execute Program - Beyond...
) Quick Help Build Log * [E]Build History | kndWatches 7| Seript Editor [[Action Information
& Clear Build History =3 Pack log file
Build Date Start Time End Time Run Time Status
myVFPApp_3.fop4 3/5/2006 14:03:22:303 140401000 00:00:31:657 v
4.2.0.276 Modified [l Stopped

Figure 20: Actions are summarized and listed when the build is complete.

Final Builder also has many other powerful featuresincluding Try...Catch error handling, On
Failure actions, logging, and much more. I’ ve only scratched the surface of what Final Builder can
do here, but | hope this introduction and examples have been enough to get you excited about
exploring thistool further on your own.

Visual Build Pro

The descriptions and screenshots here are from Visual Build Pro version 4.2.0.276, which is the
latest version available as of thiswriting. Y ou can download an evaluation copy of Fina Builder
from the publisher’ s website at www.finalbuilder.com.

Start by creating anew Visual Build Pro project files and adding actions to it. Visua Build Pro
project files are stored with a .bld file name extension. | created a smple Visua Build Pro project
to build the deployment package for myVFPApp. The build process follows the same steps used
in the other examplesin this paper. Figure 21 shows this project open in the main Visual Build
Pro window.

© 2006 Rick Borup
Page 38 of 43

www.finalbuilder.com

Automating the

Build

ak myVFPApp_1.bld* - Visual Build Professional

=1

I Fle FEdit View Go Step Buid Tools Help

t0 o3 ELe QL% a0

vly)ﬂe » I

.| 7= 6E| o wE o= |E B a

e el sBAx |N S EDIS@EX

Actions x |

Filter:
4] (uilt-In) ~

@ mit

@ Group

5521 Log Message

= Run Program

‘=‘S_] Run Script

09 Set Macro

55‘:] Subroutine Call
u Borland

3 Make Delphi

@ Make JBuilder

Files

23 Burn CO/OVD

i'} Copy Files

E Create Folder

X Delete Files

4 Delete Folder

=] ListFies

.'.D Process Files

Em Rename Files

Replace in File

|4) setFie Attributes

@ Sign Code

- ra

[+

Project Steps

n

BP Step Mame

3 Gather updated files using PicoZip
& Run Program - PicoZip
=+ Updated deployment directory from Zip file

ZHD) Ed

<]

73 Run Program - 1STool
= @ Build setup package using Inno Setup
Build setup package using Inno Setup Compiler

W
E

ild| Build Status

HEREEEREE

Action
Group

Run Program
Group

Run Program
Group

Run Program
Group

Inno Setup

"C:\Program Files\PicoZip\PicoZip.exe” -...

“C:'\Program Files\Beyond Compare 2\bc...

"C:\Program Files\[STool 4Ystool.exe™ ...

C:\SWFox2006\WFPaDistribynyVFPARY, .

Build Rule | Mo Log

Ooooooooo

'Q% Project Steps |] Subroutine Steps _*:', Failure Steps o Global Subroutine Steps | 9%, Macros

Qutput

For help, press F1

Step 40f 8

NUM

Figure 21: The Visual Build Pro main window lists available actions on the left and shows the contents of
the current project on the right. The lower portion is where output is capture and displayed as the steps

are run.

The Run Program action can be used to launch a program from the command line. This makes it
the ideal action to use when converting the steps from the .cmd file we built earlier. In Figure 17,
you can see the Run Program — Beyond Compare action selected. This and other actions are
configured by opening the action’s properties sheet. Figur e 22 shows the properties sheet for the
selected action.

© 2006 Rick Borup

Page 39 of 43

Automating the Build

2] Step Properties - Run Program - BeyondCompare @
Command: | "C:\Program Files\Beyond Compare 2\bc2.exe”™ "myVFPApp - Update Install from ZIP
Badkup”
Insert Macro
Script Editor
Frevious Step
; MNext Step
Startin:
Read program output from
Onr
() Standard output
A file:
Wait for completion
Success exit codes:
[JHide application window

Figure 22: Actions are configured by setting the desired options in the action’s Properties sheet.

The Command area of the Properties sheet contains the same command we used in the .cmd file
earlier. Near the bottom of the Properties sheet are three options you' || want to pay attention to
for each step. When marked, the Wait for completion check box tells Visual Build Pro to wait for
this step to finish before continuing with the next step. Thisis normally what you want to do. The
default success exit code for most processes is zero, but if different for some process you need to
run you can enter the appropriate value in the Success exit code field.

The Hide application window check box is marked by default, but if the step requires user
interaction, asis the case with the Beyond Compare step shown in Figure 22, you should unmark
this check box. However, Visual Build Pro detects when a Windows executable is being run and
always opens it with its window visible, so even if you forget to unmark this check box you'll be
able to interact with the application.

Visual Build Pro is aware of and has pre-configured steps for many popular programs and utilities
commonly used in the build process. For example, Visua Build Pro is aware of severa installers
including Inno Setup and InstallShield. The last step shown in Figure 22 isto build the setup
package using Inno Setup. This step is configured not as a generic Run Program action but as an
Inno Setup action, as shown in Figure 23.

© 2006 Rick Borup
Page 40 of 43

Automating the Build

%) Step Properties - Build setup package using Inno Setup Compiler @
—r—
Filemame: | C:\SWFox 2008 \WFPSDistrib ymyYFPApp\myVFPAPD. iss
[quiet mode
Specify the output path {overrides OutputDir setting):

Specify the output flename {overrides OutputBaseFilename setting): Insert Macro

Enter any additional options to the Inno Setup compiler:
Script Editor
Previous Step

[Automatically locate the Inno Setup command-ine executable

Specify the Inno Setup executable filename:

C:\Program Files\Inno Setup S\SCC.exe
[Log the command-ine that is used
[Juse 15PP-compatible command-ine

Figure 23: Visual Build Pro is aware of and has pre-configured actions for many popular software
packages commonly used in the build process, such as Inno Setup.

Figure 23 highlights where you specify the Inno Setup script you want this step to run, and also
where you specify the location of the Inno Setup compiler. There are other options for overriding
the default output path and filename, if desired.

In the Visual Build Pro main window shown in Figure 21, you can see there is a check box labeled
Build to the right of each step. Marking and unmarking these checkboxes enables you to control
which steps are performed when you run the build. Marking or unmarking the Build check box for
a group automatically makes the same change to the steps within that group.

When your project is configured the way you want it, you can run it by pressing F7 or clicking the
Build button on the toolbar. Progress is indicated in the main window as each step is run, and
console output (if any) from each step is captured and displayed in the output portion of the main
window. Figure 24 shows the state of the Visual Build Pro window after successfully running the
sample build.

© 2006 Rick Borup
Page 41 of 43

Automating the Build

4 myVFPApp_1.bld* - Visual Build Professional (=)<
I Fle FEdit View Go Step Buid Tools Help
B HS QS EBED-0-0 b i a|EsEosEs|E B alics | s B NS EDIFEX L
Actions B x| Project Steps n
Filter: BP Step Mame Build| Build Status | Action Default Property Build Rule | Mo Log
_{'JJ Transform XML ... |ev] % EHJ) Gather updated files using PicoZip Completed Group O
@’ UNZIP Files R & Run Program - PicoZip Completed Run Program C:\Program Files\PicoZip\PicoZip.exe” -... O
[Z] write File =D Updated deployment directory from Zip file Completed Group O
% write INI a Run Program - BeyondCompare Completed Run Program C:\Program Files\Beyond Compare 2\bc... O
@ ZIP Files =+ Edit the Inno Setup script using 15Tool Completed Group L]
u Installers @ Run Program - ISTool Completed Run Program C:\Program Files\[STool 4Yistool.exe”™ ...]
Eb Inno Setup =HTD ‘Build setup package using Inno Setup Completed Group O
ot Installanywhere # Build setup package using Inno Setup Compiler Completed Inno Setup C:\SWFox 2006 \WFPIDistribymyVERPAppY. .. O
#| Installanywhere. ..
% InstalAWARE
B instalishield
€ nsis
W Vise Setup
u Microsoft
&y Make vBS
B Make VCE
@9 Make VS.MET
&Y mssuid
SourceSafe
A Team Buid
& Team Foundation
L Team Test <] 2]
i_), VE,PFAGEt Ivier"' - z—gproject Steps | B] Subroutine Steps _{',Failure Steps | (g Global Subroutine Steps @&, Macros
Qutput o x
Compressing: C:\Program Files‘\Common Files‘\Microsoft Shared\VFP\vfpdrenu.dll {9.0.0.3504) i
Compressing: C:\VFP9Diatribk\System32'mawvcr7l.dll {7.10.3052.4)
Compressing: C:\Program Files‘\Common Filez'\Microsoft Shared\VFE\foxhhelpd.exe {9.0.0.2412)
Compressing: C:\Program Filea‘Common Files\Microsoft Shared\VFP\foxhhelppsd.dll (9.0.0.2412)
Compressing Setup stub
Updating wversion info
Successful compile (3.141 sec). Resulting Setup program filename is:
C:\SWFox2006\VFPIDistrib\MyVFFApP \Qutput \myVFFApp 1.0.0 Setup.exe
9/5/2006 10:02:38 PM: Build successfully completed.
]
For help, press F1 Step 7of 8 NUM

Figure 24: The Visual Build Pro main window shows all steps successfully completed. The output
window captures and displays the console output from each step along with a log entry for each step.

As with the section on Final Builder, I’ ve barely scratched the surface of what Visual Build Pro
can do for you here. If you're interested in learning more, download an evauation copy of Visual
Build Pro and start exploring!

A final note

Although the professional tools I’ ve introduced here are entirely capable of creating afully
automated build, the examples I’ ve given are deliberately simplified for the sake of illustration.
The examples here do not constitute what | would consider a fully automated build, primarily
because they till require a good deal of user interaction.

Moving from these examples to what might be considered a more fully automated build would
involve at least reconfiguring the Beyond Compare step to copy the files without a visible window
and without user interaction. And of course, there are numerous other ways to approach the
entire build process that don’t involve utilities like PicoZip and Beyond Compare at all.

Regardless of how fully you automate the build process, is may not be possible to get away from
user interaction entirely. Unless you require a build process that can run completely unattended—

© 2006 Rick Borup
Page 42 of 43

Automating the Build

for example, if it needs to run overnight—a small amount of user interaction should not be
considered a bad thing.

How much to automate?

In the end, the question you're likely to ask yourself is “How much should | automate my build
process?’ The answer, of course, isthat it's entirely up to you. In this paper I’ ve showed you
several ways to automate the parts of the build process, and you’ ve probably formed your own
ideas by now about how far you want to go with this. Y ou’ ve probably also had new ideas about
ways to automate things | haven't even mentioned here.

Asyou consider how much to automate your own build process, keep in mind the benefits you're
trying to achieve: a standardized, reliable, and repeatable way of performing the build. How you
get there is up to you.

Conclusion

Asyou move from manual builds to semi-automated builds to fully automated builds, you benefit
by saving time, reducing your work load, reducing or eliminating opportunities for manua error,
improving reliability, and creating intrinsic documentation for your build process. It takes some
effort to put together an automated build process, but there are tools to help you accomplish this
and once you've done it you'll appreciate its value each time you build your deployment package.

About the author

Rick Borup is an independent developer specializing in the design, development, and support of
mission-critical business software solutions for small to medium-size businesses. Rick earned B.S.
and M.B.A. degrees from the University of Illinois a Urbana-Champaign, and is owner and
president of Information Technology Associates in Champaign, Illinois. He has been developing
solutions with FoxPro/Visua FoxPro (VFP) full-time since 1993, and is a Microsoft Certified
Solution Developer (MCSD) and a Microsoft Certified Professional (MCP) in VFP. Rick is co-
author of the books Deploying Visual FoxPro Solutions and Visual FoxPro Best Practices for the
Next Ten Years, both from Hentzenwerke Publishing. He is technical editor for the Advisor
Discovery column in Advisor Guide to Microsoft Visual FoxPro (formerly FoxPro Advisor) and a
frequent speaker at VFP conferences and user groups.

Copyright © 2006 by Rick Borup.

Microsoft, Windows, Visual FoxPro, and other terms are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries. WinZip is a registered trademark of
WinZip International LLC. PicoZip is a trademark of Acubix. Beyond Compare is a registered trademark
of Scooter Software, Inc. Final Builder is a product of VSoft Technologies Pty Ltd. Visual Build Pro is a
product of Kinook™ Software, Inc. All other trademarks are the property of their owners.

© 2006 Rick Borup
Page 43 of 43

