
This paper was originally presented at the Virtual Fox Fest online
conference in October, 2020. https://virtualfoxfest.com/

Getting Comfortable with Git

Rick Borup
Information Technology Associates, LLC

701 Devonshire Dr, Suite 127
Champaign, IL 61820 USA

www.ita-software.com
rborup@ita-software.com

Have you started using Git but don't feel totally comfortable with it? Are you thinking about
getting started with Git but are reluctant to jump in because it looks complicated and scary?
Or are you an experienced Git user who feels there are still areas of Git you'd like to know
more about? If any of these describe you, this session is for you. Together we'll explore the ins
and outs of Git along with some tips and tricks so you'll be able to use Git effectively in your
own work.

https://virtualfoxfest.com/

Getting Comfortable with Git

Copyright 2020, Rick Borup Page 2 of 46

Introduction
So, you want to get comfortable using Git? Two words:

Use it!

Seriously, the best way to get comfortable with Git is to use it as often as you can. Pick a
project you're already working on, put it under Git version control, and use Git every time
you work on the project. You'll make some mistakes along the way - that's OK. While you're
learning, or when you're exploring some new Git feature you haven't tried before, make a
backup of your project folder before you begin and you'll always have a safety net in case
things go wrong.

This session covers the parts of Git you'll likely use most often. For some this may be an
introduction, for others a review. If you're new to Git this should give you enough to get
started. If you're an experienced Git user I hope you find a nugget or two of new
information. When you want more depth there are plenty of resources for you. Some of the
ones I've found useful are listed in the Resources section at the end of this paper.

So jump in, get going, and good luck along the way!

You will learn

• How Git sees the world

• About command line Git and Git GUI's

• About various branching strategies in Git

• How to research and track revision history in Git

• About 'hunky' development

• What's new in the latest releases of Git

Notes on the syntax of sample code

In some of the sample code for Git commands I use the Visual FoxPro “&&” token as a
familiar way to demark inline comments. Inline comments are not valid in Git. Unless
otherwise noted, anything following && in a line of sample code for Git in this paper should
be interpreted as a comment, not as part of the command.

C:\>git init && this is a comment

When a folder name is relevant to a code example, the command prompt is written with the
appropriate drive/path/folder, as in C:\myProject>. If the folder name is not relevant, the
command prompt is written merely as C:\> or even just the prompt symbol >. This is done
to keep the sample code lines as short as possible; it does not necessarily imply the
command should be run from the root of the C: drive.

C:\myProject>git log && this line of code should be run from C:\myProject

Getting Comfortable with Git

Copyright 2020, Rick Borup Page 3 of 46

C:\>git log && current working tree folder is assumed

>git log && current working tree folder is assumed

If a sample line of code is written without any command prompt, the command prompt is
implied.

git log && the > command prompt is implied

In examples combining command prompt entries and output from those commands, the
commands are always be preceded by a command prompt while the output lines are not.

C:\myProject>git init
Initialized empty Git repository in C:\myProject && output from git init

In some cases, blank lines in the actual output from Git have been removed to save space.

The tilde (~)indicates a line continuation, meaning the content is too long to show on one
line in this paper. The following is a single line in the Git configuration file:

mergetool.BeyondCompare4.cmd="C:/Program Files/Beyond Compare 4/bcomp.exe" ~
 "$LOCAL" "$REMOTE" "$BASE" "$MERGED"

Aliases are convenient shortcuts to longer commands. For example, I use glog as an alias
for log --graph --oneline and stat as an alias for status. You may see these aliases in some of
the sample code. See Aliases in the section on Configuring Git for information on creating
aliases.

Parameters passed to a command sometimes need to be surrounded by quote marks.
Single quote marks are OK if you're working in PowerShell, but double quote marks are
required when working from the Windows command prompt (cmd.exe).

PS> git commit -m 'the commit message' && single quotes are ok in PowerShell

C:\>git commit -m "the commit message" && double quotes are required

How Git sees the world
As developers, our view of the world is our source code files. We usually see and think
about them the way they’re organized in the project manager, solution explorer, or
whatever other interface we’re using in our work. In a typical VFP project, for example, we
think about our source code files in terms of the tree structure in the Project Manager,
perhaps with subfolders for different types of files. In version control system lingo, the
collection of physical source code files on our local hard drive is called the working copy or
the working tree.

Git, on the other hand, does not care much about how we see things. To a certain extent it
does not even care that the source code files exist outside the repository. Git sees our
source code files as a set of objects and pointers describing the current state of each file

Getting Comfortable with Git

Copyright 2020, Rick Borup Page 4 of 46

and the way each one has evolved over time. From Git’s point of view, the working copy is
simply a derivative structure providing a way for humans to view and modify files.

You do not need to understand Git’s internals to use it, but it’s helpful to know at least a
little about how Git operates. Internally, Git stores four kinds of objects: commits, trees,
tags, and blobs (binary large objects). You can think of commit, tree, and tag objects as
pointers. Blob objects are snapshots of the content of source code files, stored in a
compressed format. Git creates a unique, 40-character SHA-1 hash, called the hash ID, for
every object and uses these IDs to identify and locate the objects in the repository.

When you modify a source code file and commit it to the repository, Git creates a commit
object, a tree object, and one or more blob objects. Among other things, the commit object
stores information about the identity of the person making the commit, the date and time
the commit is made, and the commit message. Git creates a new blob object for each file
that is being committed, capturing the current state of the file. The commit object points to
its tree object which in turn points to one or more blob objects.

On disk, Git stores objects in a folder/subfolder structure. The first two characters of each
object’s hash ID are the subfolder name and the remaining 38 characters are the file name.
An internal structure called the index links each file’s path and file name in the working
tree to the hash ID of its blob object in the repository.

When you make a commit, it is recorded on a branch. If you have not created any other
branches the commit is recorded on the default branch, which is called the master branch.
(You can use a different name if you want to – see the How to Change the Name of the
Default Branch tip in the Branching and Merging section.) An internal reference called the
HEAD points to the most recent commit. When you commit a set of modifications to the
repository, Git modifies the HEAD pointer so it points to the new commit object.

[1st Commit] <-- [2nd Commit] <-- [3rd Commit]
 ˄
 |
 HEAD

Figure 1; Linear progression of commits. The HEAD pointer points to the most recent commit.

Although Git uses all 40 characters of each object’s hash ID internally, it’s customary and
more convenient for humans to refer only to the first seven characters. This is called the
abbreviated ID. Get used to this – whenever you’re viewing the log of changes or need to
reference a specific commit, you’ll typically see and use the first seven characters of the
hash ID. Figure 2 is the same as Figure 1 but shows the first seven characters of the hash
IDs as you would see them in Git’s abbreviated-form log of changes.

[4d9a7bd] <-- [33d8ecd] <-- [c6ce666]
 ˄
 |
 HEAD

Getting Comfortable with Git

Copyright 2020, Rick Borup Page 5 of 46

Figure 2; Same series of commit as in Figure 1, identified with their abbreviated hash IDs.

Every commit must have a commit message, which (ideally) describes the modifications
made in that commit. Commit messages are created by the developer prior to committing.
There are general guidelines for good commit messages – for example, see How to write a
Git commit message at https://chris.beams.io/posts/git-commit/. You may have your own
preference and/or your organization may have its own guidelines. Regardless, writing good
commit messages is an essential part of using Git effectively.

Commit messages are shown in the log of changes. Listing 1 is one way to view the log of
changes, shown in one-line format with abbreviated commit IDs.

Listing 1: Note the reference to the HEAD pointer and identification of the master branch on the top line.

>git log --oneline
c6ce666 (HEAD -> master) 3rd commit
33d8ecd 2nd commit
4d9a7bd 1st commit

The most recent commit is always on the top line, with older commits following in reverse
chronological order. The log continues to grow as long as modifications are being made and
committed to the repository.

Git treats the commit message as part of the content of the commit and includes
it when creating the commit’s hash ID. If you amend a commit, even if only to
change its commit message, Git replaces the original commit with a new one
using a different hash ID. Never amend a commit once you’ve pushed it to a

remote repository or otherwise shared it with others in any way, because doing so would
result in a discontinuity between your version and the other developers’ versions of the
repository.

Command line Git
You can interact with Git from the command line or by using a Git GUI. There are several Git
GUI’s to choose from. Even if you end up adopting one for your daily work, it’s important to
learn and understand command line Git.

On the command line, Git is invoked with the git verb followed by a command and most
often a series of options and/or parameters. On Windows machines, command line Git can
be run from a command prompt or from PowerShell. The new Windows Terminal enables
you to use either one from a single interface.

Getting Comfortable with Git

Copyright 2020, Rick Borup Page 6 of 46

Options

Command line options often have a long form and a short form. The long form is preceded
by a double dash while the short form is preceded by a single dash. There is never a space
between the dash(es) and the option.

git commit -a
git commit --all

A capital letter usually indicates forcing a command.

git branch -d newfeature && delete the newfeature branch
git branch -D newfeature && force deletion of the newfeature branch

Parameters

Command line parameters are preceded by a double dash followed by a space followed by
the parameter. This should not be confused with the double-dash version of options.

git restore -- foo.txt && restore foo.txt to its unmodified state

Sometimes you’ll want to use both an option and a parameter.

git restore --staged -- foo.txt && unstage foo.txt

Path and file names

Windows uses forward slashes to pass options to commands that take options, such as the
/on option with the dir command to list the results in alphabetical order by name.

dir *. /on

It may not be widely known that Windows supports both forward slashes and backslashes
when entering path and file names in the command window. For example, the following
command is valid even though the Windows file system uses backslashes.

C:\>cd /swfox2020/ComfyWithGit/Code && command using forward slashes
C:\SWFox2020\ComfyWithGit\Code> && response displays backslashes

Because of its location on the keyboard, I find the forward slash much easier to type than
the backslash. You'll see forward slashes used to specify path and file names in commands
throughout this paper, except when a backslash is required or appears in the response
from the command.

In Git literature it's common to see /path/to/file used as a proxy for the actual full path and
file name, as in

git add -- path/to/file

where path/to/file identifies a specific file such as Prgs/main.prg.

Similarly, pathspec is used to indicate a file or set of files, as in

Getting Comfortable with Git

Copyright 2020, Rick Borup Page 7 of 46

git add -- <pathspec>

where pathspec could be something like Prgs/*.prg.

Configuring Git
Git uses three configuration files.

• system (universal) level – Program Files/Git/etc/gitconfig

• global (user) level – users/<username>/.gitconfig

• local (repository) level – path/to/repository/.git/config

Note the dot (period) character preceding the name of the global configuration file. In *nix
systems, a leading dot means a hidden file. Windows does not hide dot-files.

Git reads and applies settings from the bottom up – local first, then global, then system.
Local (repository-level) settings override global (user-level) settings, which in turn
override system settings.

Git's configuration files are INI-format files.

[section]
property=value
; this is a comment

Configurations can be set from the command line or by editing the configuration file
directly in a text editor. The following command sets the global username:

git config --global user.name 'Rick Borup'

The same thing could be accomplished by editing the global configuration file directly.

git config --edit --global

The section containing the user's name and email address looks like this:

[user]
 name = Rick Borup
 email = rborup@ita-software.com

You can open any of the configuration files in the default text editor by specifying which
one you want to edit.

git config --edit --local
git config --edit --global
git config --edit --system

The basic settings

The first thing to do after installing Git is to set your username and email address. This lets
other developers know who made each commit and how to get in touch with you.

Getting Comfortable with Git

Copyright 2020, Rick Borup Page 8 of 46

git config --global user.name 'Rick Borup'
git config --global user.email 'rborup@ita-software.com'

Tools

You may also want to configure Git to use your favorite file editor, diff tool, and merge tool.

File editor

The default file editor on Windows in Notepad. If you prefer a different editor, search the
Web for the options you may need to supply for Git to use it. The following shows the
setting for Visual Studio Code, with the setting for Notepad commented out.

[core]
 ;editor=notepad.exe
 editor = 'C:/Users/rick/AppData/Local/Programs/Microsoft VS Code/Code.exe' --wait

Diff tool

The diff tool is used for visual display of diffs between two versions of a file. This does not
affect how diffs are displayed in the command line interface in response to the diff
command, but rather what happens if you run the difftool command. The settings for
Beyond Compare 4 look like this:

[diff]
 guitool = beyondcompare4
[difftool "beyondcompare4"]
 path = C:/Program Files/Beyond Compare 4/bcomp.exe
 cmd = \"C:/Program Files/Beyond Compare 4/bcomp.exe\" \"$LOCAL\" \"$REMOTE\"

Merge tool

The merge tool is the visual tool used to resolve merge conflicts. The settings for Beyond
Compare 4 look like this:

[merge]
 tool = BeyondCompare4
[mergetool "BeyondCompare4"]
 path = C:/Program Files/Beyond Compare 4/bcomp.exe
 cmd = \"C:/Program Files/Beyond Compare 4/bcomp.exe\" ~
 \"$LOCAL\" \"$REMOTE\" \"$BASE\" \"$MERGED\"

Other settings

Set autocrlf true if your file system uses CRLF line endings (like Windows) but the
repository uses LF. This is useful for sharing code among developers who may be working
on diverse file systems.

git config --global core.autocrlf true

Git is case sensitive by nature. The NTFS file system on Windows is not. Setting ignorecase
true tells Git to treat somefile.txt the same as SomeFile.TXT or any other variation of the

Getting Comfortable with Git

Copyright 2020, Rick Borup Page 9 of 46

same name with different casing. This is particularly useful for VFP developers, as VFP is
notorious for changing the case of file names and/or extensions during development.

git config --global core.ignorecase true

I believe Autocrlf and ignorecase are both set true by default for Git installations on
Windows.

Aliases

Aliases are convenient shortcuts for frequently used commands. Aliases are created with
the config command and are stored in Git's configuration files. For examples, developers
like me who were accustomed to working in Mercurial are used to typing stat to see the
status of a repository. Git requires the full word status and does not recognize stat, but it's
easy to create an alias so it does.

git config --global alias.stat status

Similarly, you might want to create a shortcut for a frequently used version of the log
command. My favorite is log --graph --oneline but that's a lot to type every time, so creating
an alias saves me a lot of keystrokes. I use glog (for graphical log) as the alias for that
command.

git config --global alias.glog 'log --graph --oneline'

Aliases can be removed by deleting them from the configuration file or using the config
command with the --unset option.

git config --local alias.foo log && foo now runs the log command
git config --local --unset alias.foo && removes foo as an alias

Listing configuration settings

The config command's --list option provides an easy way to view your configuration
settings without having to open and inspect the configuration files.

git config --list --global

This provides a nicely formatted list of the options in the specified configuration file.
Listing 2 is the partial output of the settings on my machine.

Listing 2: Partial output from the git config --list command.

>git config --list
user.name=Rick Borup
user.email=rborup@ita-software.com
core.autocrlf=true
core.editor='C:/Users/rick/AppData/Local/Programs/Microsoft VS Code/Code.exe' --wait
core.ignorecase=true
merge.tool=BeyondCompare4
diff.guitool=beyondcompare4

Getting Comfortable with Git

Copyright 2020, Rick Borup Page 10 of 46

difftool.beyondcompare4.path=C:/Program Files/Beyond Compare 4/bcomp.exe
difftool.beyondcompare4.cmd="C:/Program Files/Beyond Compare 4/bcomp.exe" ~
 "$LOCAL" "$REMOTE"
mergetool.BeyondCompare4.path=C:/Program Files/Beyond Compare 4/bcomp.exe
mergetool.BeyondCompare4.cmd="C:/Program Files/Beyond Compare 4/bcomp.exe" ~
 "$LOCAL" "$REMOTE" "$BASE" "$MERGED"

Use the --show-origin option in conjunction with --list to see where each setting is
configured. Listing 3 is the partial output from this command.

Listing 3: Partial output from the git config --list --show-origin command.

>git config --list --show-origin
file:C:/Program Files/Git/etc/gitconfig core.autocrlf=true
file:C:/Program Files/Git/etc/gitconfig core.fscache=true
file:C:/Program Files/Git/etc/gitconfig core.symlinks=true
file:C:/Program Files/Git/etc/gitconfig core.ignorecase=true
file:C:/Program Files/Git/etc/gitconfig pull.rebase=false
file:C:/Users/rick/.gitconfig user.name=Rick Borup
file:C:/Users/rick/.gitconfig user.email=rborup@ita-software.com
file:C:/Users/rick/.gitconfig core.autocrlf=true

Getting help

Git is a large and complex piece of software. Fortunately, it comes with an extensive HTML
help file. This file is installed on your local machine so it's always available even when
you're offline.

To get help for any Git command, simply type git help followed by the name of the
command to open the HTML page for the requested command in your default browser.

git help merge && open the help page for the merge command

Most Git command have a long list of formats and options. You won't need to know them
all, but it's nice to be able to call up the help file from the command line whenever you need
a refresher or want to explore something new.

Local workflow

Special considerations for VFP

When you’re working on a project in the VFP IDE, you’re modifying VFP’s binary files — the
class libraries, forms, reports, labels, menus, and the project manager file itself. If there are
different changes to the same file in two different branches of a repository, version control
systems attempt to merge them and enable developers to intervene to resolve any conflicts.

The problem with binary files is they can’t be merged.

To address this problem, VFP community members have developed and released tools to
create text-equivalent versions of a project’s binary files. These text-equivalent files can be

Getting Comfortable with Git

Copyright 2020, Rick Borup Page 11 of 46

merged like any other text-based file, and the binary files can then be re-generated from
the merged text file.

The big question for VFP developers is what to include the repository:

• include only the binary files, or

• include only the text-equivalent files, or

• include both the binary files and the text-equivalent files.

Include only the binary files

If only the binary files are included, it is not possible to merge two different sets of changes
to the same file. You’re forced to choose one or the other and then rely on some form of
external communication among the developers to know what changes to incorporate into
the result. This is a serious impediment to collaborative development and is therefore the
least favorable choice, in my opinion.

Include only the text-equivalent files

If only the text-equivalent files are included, the merge conflict resolution mechanism
works but a clone of the repository has none of the binary files needed to work on the
project in the VFP IDE. All the binary files would need to be re-generated from their text-
equivalents before the project could be modified or the application built for the first time.
Going forward, sharing and merging changes among developers via the text-equivalent files
works great if each developer remembers to regenerate the binaries for all modified files
before working with them in the VFP IDE. There is also a small risk that re-generating the
binaries for a file could fail. I’ve seen that happen, and when it does the text-equivalent file
needs to be corrected manually, if that’s possible, or the binaries must be recovered from
some other source.

Include both the binary files and the text-equivalent files

Including both the binary files and their text equivalents is the safest and most robust
choice. The main disadvantage is that the repository grows larger more quickly because
updated snapshots of all three files—e.g., myForm.scx, myForm.sct, and the text-equivalent
text file for that pair—are stored in the repository every time the file is modified and
committed. Including both types of files in the repository solves the problem of a potential
mismatch between the binaries and their text-equivalents when updates are shared among
developers, but the binaries still require special handling if a conflict occurs during a merge
operation. The section on merge conflicts has example of this and what to do about it.

Inspecting differences

After making changes to a source code file, you may want to review how it differs from the
original. Git’s diff command shows what’s been changed in a file. If a diff tool such as
BeyondCompare or KDiff3 has been configured, it can be invoked from the command line
with the difftool command. Both commands accept a parameter to specify the file whose
changes you want to see.

Getting Comfortable with Git

Copyright 2020, Rick Borup Page 12 of 46

git diff -- <path/to/file>
git difftool -- <path/to/file>

Without any other options, Git compares the state of the file in your working tree (the
modified file) to the state of the same file in the index as it was most recently committed on
the current branch. The differences are shown in unified diff format.

The example below illustrates how git diff displays changes to a file named readme.txt. The
old content of the line that was changed is shown in red preceded by a minus sign, while
the new content of that same line is shown in green preceded by a plus sign. In this
example, only the release date was changed.

> git diff -- readme.txt
diff --git a/readme.txt b/readme.txt
index 22f5985..424b9c3 100644
--- a/readme.txt
+++ b/readme.txt
@@ -1,7 +1,7 @@
 What's New in myApp

-Version 9.2.101 - June 19, 2019
+Version 9.2.101 - July 23, 2020

 1. Initial release.

If a file has already been staged but not yet committed, you can still view the changes by
adding the --staged option to the diff command.

> git diff --staged -- readme.txt

You can also use git diff to compare two versions of a file by specifying the
commit for each one. For example, if the develop branch has a newer version of
readme.txt than the master branch, you can inspect the differences by comparing
master:readme.txt with develop:readme.txt, like this:

git diff master:readme.txt..develop:readme.txt

If the versions you want to compare are not on the tip of their respective branches, you can
use the commit IDs in place of the branch names, like this:

git diff 1b792cc:readme.txt..fc6d326:readme.txt

What was changed in a commit?

The git show command displays information about an object in the repository. If the object
is a commit, git show displays what's been changed in the commit. The following example
tells Git to show what was changed in commit ID c9d5191. The output begins with log

Getting Comfortable with Git

Copyright 2020, Rick Borup Page 13 of 46

information about the commit, including the author, date, and commit message, followed
by the diff of the modified file(s).

>git show c9d5a91
commit c9d5a91c08d56c837849f51d753b47caf712eead (HEAD -> master)
Author: Rick Borup <rborup@ita-software.com>
Date: Thu Jul 23 17:30:50 2020 -0500
 Update for Southwest Fox 2020
diff --git a/forms/frmmyform.SCT b/forms/frmmyform.SCT
index f074b56..e396461 100644
Binary files a/forms/frmmyform.SCT and b/forms/frmmyform.SCT differ
diff --git a/forms/frmmyform.sc2 b/forms/frmmyform.sc2
index a8678be..871143b 100644
--- a/forms/frmmyform.sc2
+++ b/forms/frmmyform.sc2
@@ -30,7 +30,7 @@ DEFINE CLASS frmmyform AS form
 AutoCenter = .T.
 BorderStyle = 1
- Caption = "FoxCon 2015 Demo App"
+ Caption = "Southwest Fox 2020 Demo App"

To view the changes to a specific file, include the file name as a parameter.

>git show c9d5a91 -- readme.txt
commit c9d5a91c08d56c837849f51d753b47caf712eead (HEAD -> master)
Author: Rick Borup <rborup@ita-software.com>
Date: Thu Jul 23 17:30:50 2020 -0500
 Update for Southwest Fox 2020
diff --git a/readme.txt b/readme.txt
index 22f5985..424b9c3 100644
--- a/readme.txt
+++ b/readme.txt
@@ -1,7 +1,7 @@
 What's New in myApp

-Version 9.2.101 - June 19, 2019
+Version 9.2.101 - July 23, 2020

1. Initial release.

You can also use the alternate syntax of the branch name or commit ID followed by a colon
followed by the file name.

>git show c9d5a91:readme.txt

Inspecting the history of a file

The git log command shows the history of commits. Sometimes, rather than seeing the
entire log or some portion of it in chronological order, you'd instead like to know which
commits modified a specific file. To do this, pass the name of the file as a parameter to the
log command. The following example shows that readme.txt was modified in two commits,
c9d5a91 and bd5c751.

Getting Comfortable with Git

Copyright 2020, Rick Borup Page 14 of 46

>git glog -- readme.txt
* c9d5a91 (HEAD -> master) Update for Southwest Fox 2020
* bd5c751 Initial commit

To see what changed between those two commits, include their commit IDs as parameters
to the git diff command.

>git diff c9d5a91 bd5c751 -- readme.txt
diff --git a/readme.txt b/readme.txt
index 424b9c3..22f5985 100644
--- a/readme.txt
+++ b/readme.txt
@@ -1,7 +1,7 @@
 What's New in myApp

-Version 9.2.101 - July 23, 2020
+Version 9.2.101 - June 19, 2019

 1. Initial release.

Staging

Staging is the intermediate step between making changes to files in your working tree and
committing those changes to the repository. You may have made changes to several files
and are ready to commit some but not all of them, or you may be ready to commit all of
them but want to separate them into two or more commits. Staging enable you to tell Git
which file(s) you want to include in the next commit.

Files are staged with the git add command. You can add each file individually by name or
you can use the --all option to stage all new, modified, and deleted files in one step. In Git
2.x the following three commands are equivalent:

git add --all
git add -A
git add .

The third one, git add followed by a space and a period, is the easiest to type and is
probably the one preferred by most developers.

Your working tree probably contains certain types of files you don't want to add to the
repository – for example, EXEs, DLLs, and others you don't modify directly and whose
version history you don't care about tracking. Git uses an exclusion file named .gitignore as
the place to list the files it should ignore (the leading dot means it's a hidden file in *nix
systems). The entries in this file can be individual file names or pathspecs like *.exe, *.dll,
etc. Folder names should be terminated with a slash character.

The entries are case sensitive, so on a Windows system it's advisable to list both the
uppercase and lowercase format for each type of file; for example, *.exe and *.EXE. This is
especially true for VFP file name extensions because, with apologies to Forrest Gump, VFP
is like a box of chocolates: you never know what you're going to get.

Getting Comfortable with Git

Copyright 2020, Rick Borup Page 15 of 46

Each working tree can have its own .gitignore file, but if there are certain types of
files you know you'll never want Git to include in any repository you can create a
global .gitignore file that applies to all Git repositories. ZIP files and EXE files
might be good examples of this. See Appendix A for how to set up a global

exclusion file.

Git uses colors to convey information when you’re working from a command line. The
status command uses red to indicate files that have been modified but not yet staged.

> git status
On branch master
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git restore <file>..." to discard changes in working directory)
 modified: myapp.PJT
 modified: myapp.PJX

Files that are staged and ready to be committed are shown in green.

> git add .
> git status
On branch master
Changes to be committed:
 (use "git restore --staged <file>..." to unstage)
 modified: myapp.PJT
 modified: myapp.PJX

__

Git won’t let you stage a file if another process is holding a lock on that file. I most
often run into this when I forget to close the project manager in VFP before
trying to stage changes that include the project manager files. In the example
below, git status shows the project files myApp.PJT and myApp.PJX are modified

and ready to be staged.

>git status
On branch master
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git restore <file>..." to discard changes in working directory)
 modified: myapp.PJT
 modified: myapp.PJX

If you try to stage those files while the project manager is still open in the VFP IDE, Git
responds as follows:

>git add .

Getting Comfortable with Git

Copyright 2020, Rick Borup Page 16 of 46

error: open("myapp.PJT"): Permission denied
error: unable to index file 'myapp.PJT'
fatal: updating files failed

The solution is to close the VFP project manager and run git add again.

__

Committing

Every commit requires a commit message. Git accepts almost anything as a commit
message, but a good commit message describes the changes in a way that makes it easy for
anyone reading the history to understand. There is a good reference on how to write a
commit message at https://chris.beams.io/posts/git-commit/,

Commit messages can be a single line or several lines. Single line commit messages are
quick and easy, but multi-line commit messages are preferred for all but the simplest
commits.

Use the -m option to include your commit message on the command line.

git commit -m 'fixed issue #365'

If you’re committing from the command line and leave off the -m option, Git opens your
default text editor and waits for you to enter the commit message. This is the best way to go
if you want to write a multi-line commit message from the command line. Git finishes the
commit after you save the file and exit the text editor. Closing the text editor without saving
the file aborts the commit.

Git GUIs such as Sourcetree typically provide a space for you to write the commit message
directly in their interface, so you do not have to use an external text editor.

Partial commits

Staging selected files

One of the cool things about Git is that you don’t have to stage and commit all modified files
at once. You can make your commits as granular as you want. For example, if you’ve
modified a form and the project files got updated when you built the EXE, git status would
show this:

> git status
On branch master
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git restore <file>..." to discard changes in working directory)
 modified: forms/frmmyform.SCT
 modified: forms/frmmyform.sc2
 modified: forms/frmmyform.scx
 modified: myapp.PJT
 modified: myapp.PJX

https://chris.beams.io/posts/git-commit/

Getting Comfortable with Git

Copyright 2020, Rick Borup Page 17 of 46

 modified: myapp.pj2

If you decide you want to commit the modified form files but hold off on the project files
until later, you can stage only the form files.

>git add -- forms/frmmyform.* && assuming only those three files match that pattern

The status command then shows those three files ready to commit while the project files
remain modified but not staged.

> git status
On branch master
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git restore <file>..." to discard changes in working directory)
 modified: myapp.PJT
 modified: myapp.PJX
Changes to be committed:
 (use "git restore --staged <file>..." to unstage)
 modified: forms/frmmyform.SCT
 modified: forms/frmmyform.sc2
 modified: forms/frmmyform.scx

Doing a commit at this point commits only the three form files while leaving the project
files in their modified state in your working tree.

Stashing changes

Git’s stash is exactly what it sounds like – a place where you can stash work in progress
without having to commit it to a branch. Files in the stash can be retrieved by popping
them off the stash back onto the working tree. If the changes are not needed the stash can
simply be cleared without popping it.

Entries in the stash have names. This enables the stash to contain more than one entry at a
time. Unless you specify a different name, Git uses the default name WIP on <branch
name>… for each stash entry it creates, where WIP stands for work in progress.

With no options, the stash command copies all work in progress—i.e., all modified tracked
files in the working tree—to the stash and resets the working tree to a clean state. As an
example, say you make some changes to myProgram.prg but do not commit them. The
status command shows the modified file.

> git status
On branch develop
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git restore <file>..." to discard changes in working directory)
 modified: myProgram.prg
no changes added to commit (use "git add" and/or "git commit -a")

Getting Comfortable with Git

Copyright 2020, Rick Borup Page 18 of 46

If you want to clear your working tree but preserve your changes without committing
them, you can stash your work in progress, go on to work on something else, and retrieve
your earlier work from the stash later. Git generates a default name for each stash entry
reflecting the branch you are working on along with the ID and commit message of the
HEAD of the branch at the time the stash is created.

> git stash
Saved working directory and index state WIP on develop: 7a57f2f Remove unnecessary ~
 local memvars

After stashing your work in progress, the status command confirms your working tree is
clean.

> git status
On branch develop
nothing to commit, working tree clean

The stash command's list option lists the contents of the stash, while the show option shows
details.

> git stash list
stash@{0}: WIP on develop: 7a57f2f Remove unnecessary local memvars

> git stash show
 myProgram.prg | 279 ++++++++++++++++++++++++++++++-------------------
 1 file changed, 173 insertions(+), 106 deletions(-)

The pop option retrieves work from the stash, reapplies it the working tree, and clears the
entry from the stash.

> git stash pop
On branch develop
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git restore <file>..." to discard changes in working directory)
 modified: myProgram.prg
no changes added to commit (use "git add" and/or "git commit -a")
Dropped refs/stash@{0} (c7cc2e393b9260aa570485d727216ef1463a9143)

The stash is useful in many situations, including when you need to pull changes from a
remote repository without affecting your work in progress.

Working with hunks

Previous examples showed how staging enables you to commit only selected files from a
working tree that also contains other modified files. But what if you've made two unrelated
sets of changes to the same file and want to handle them as two separate commits. Can you
do that?

Getting Comfortable with Git

Copyright 2020, Rick Borup Page 19 of 46

Yes – enter the concept of hunks. A hunk is a set of modified lines in a file. Git uses a
heuristic to determine what qualifies as a hunk and what separates one hunk from another.
You see hunks when you view the output from a diff command.

If a file contains more than one hunk of modified lines, you can choose which one(s) to
stage using the -p (short for --patch) option of the add command.

git add -p

Quoting from the Git help page for the add command, the -p option tells Git to "Interactively
choose hunks of patch between the index and the work tree and add them to the index. This
gives the user a chance to review the difference before adding modified contents to the
index."

Here's the scenario: you make two sets of unrelated changes to a file without committing.
You then decide you'd like to commit those changes separately instead of as one commit.
One reason for this would be to achieve a more granular history in the repository.

The assumption is that Git identifies the two sets of changes as different hunks. As far as I
know, you do not have any control over this; Git's algorithm decides what constitutes a
hunk and where the boundaries are between hunks. Working with a simple text file I found
that modifications separated by several intervening lines tend to be treated as separate
hunks while modifications separated by only a few lines are treated as a single hunk, but
again, Git's heuristics make that determination.

Here an example using a file named animals.prg with class definitions for family pets: a cat,
a dog, and a fish. Listing 4 is the initial state of file as committed to the repository.

Listing 4: The initial contents of animals.prg.

DEFINE CLASS Cat AS Custom
PROCEDURE Speak()
WAIT WINDOW NOWAIT 'meow'
ENDPROC && Speak
ENDDEFINE && Cat

DEFINE CLASS Fish as Custom
PROCEDURE Speak()
WAIT WINDOW NOWAIT 'fish cannot speak'
ENDPROC && Speak
ENDDEFINE && Fish

DEFINE CLASS Dog AS Custom
PROCEDURE Speak()
WAIT WINDOW NOWAIT 'woof'
ENDPROC && Speak
ENDDEFINE && Dog

The Dog and Cat classes are then modified so the animal makes a different sound when the
animal is happy than when it's not happy. Fish don't speak so no change is made to the Fish

Getting Comfortable with Git

Copyright 2020, Rick Borup Page 20 of 46

class. In this example the Fish class is arbitrarily placed between the Dog and the Cat
classes so Git will treat the changes as two different hunks. Listing 5 is the modified file.

Listing 5: The modified animals.prg. The modified lines are shown in italics.

DEFINE CLASS Cat AS Custom
disposition = 'happy'
PROCEDURE Speak()
WAIT WINDOW NOWAIT IIF(this.disposition = 'happy', 'purr', 'hiss')
ENDPROC && Speak
ENDDEFINE && Cat

DEFINE CLASS Fish as Custom
PROCEDURE Speak()
WAIT WINDOW NOWAIT 'Fish cannot speak'
ENDPROC && Speak
ENDDEFINE && Fish

DEFINE CLASS Dog AS Custom
disposition = 'happy'
PROCEDURE Speak()
WAIT WINDOW NOWAIT IIF(this.disposition = 'happy', 'woof', 'grrr')
ENDPROC && Speak
ENDDEFINE && Dog

Running git add with the -p option detects the changes to the Cat class as one hunk and the
changes to the Dog class as another hunk, prompting for what to do with each hunk
individually. There are several possible responses to the prompt but the only ones to care
about for this example are 'y' for yes and 'n' for no.

The Cat hunk comes up first. Reply 'n' to not stash it, i.e., to keep those changes in place for
the upcoming commit (see line 14). The Dog hunk comes up next. Reply 'y' to stash it and
preserve those changes for the second commit (see line 24).

1. > git add -p
2. diff --git a/animals.prg b/animals.prg
3. index a7419be..15dff26 100644
4. --- a/animals.prg
5. +++ b/animals.prg
6. @@ -1,6 +1,7 @@
7. DEFINE CLASS Cat AS Custom
8. +disposition = 'happy'
9. PROCEDURE Speak()
10. -WAIT WINDOW NOWAIT 'meow'
11. +WAIT WINDOW NOWAIT IIF(this.disposition = 'happy', 'purr', 'hiss')
12. ENDPROC && Speak
13. ENDDEFINE && Cat
14. (1/2) Stage this hunk [y,n,q,a,d,j,J,g,/,s,e,?]? y && yes, stage this hunk
15. @@ -11,7 +12,8 @@ ENDPROC && Speak
16. ENDDEFINE && Fish
17. DEFINE CLASS Dog AS Custom
18. +disposition = 'happy'
19. PROCEDURE Speak()

Getting Comfortable with Git

Copyright 2020, Rick Borup Page 21 of 46

20. -WAIT WINDOW NOWAIT 'woof'
21. +WAIT WINDOW NOWAIT IIF(this.disposition = 'happy', 'woof', 'grrr')
22. ENDPROC && Speak
23. ENDDEFINE && Dog
24. (2/2) Stage this hunk [y,n,q,a,d,K,g,/,s,e,?]? n && no, do not stage this hunk

Running the status command at this point shows animals.prg both as a staged file (the
version with the changes to the Cat class) and as a modified, unstaged file (the version with
the changes to the Dog class).

> git stat
On branch master
Changes to be committed:
 (use "git restore --staged <file>..." to unstage)
 modified: animals.prg
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git restore <file>..." to discard changes in working directory)
 modified: animals.prg

Commit the changes to the Cat class.

> git commit -m 'Happy cat'
[master a128427] Happy cat
 1 file changed, 2 insertions(+), 1 deletion(-)

The remaining modified animals.prg contains the changes to the Dog class. To finish the
process, stage and commit it in the usual manner.

>git add .
> git commit -m 'Happy dog'
[master 36db477] Happy dog
 1 file changed, 2 insertions(+), 1 deletion(-)

The log now shows two separate commits even though you made both changes to
animals.prg at the same time.

>git glog
* 36db477 (HEAD -> master) Happy dog
* a128427 Happy cat
* 7895482 Initial commit

The stash command also accepts a -p option. As an alternative to the solution above, you
could use the -p option to stash one hunk, commit the other hunk, pop the stash, and then
commit again.

Congratulations, you've master 'hunky' development! See the Resources section of this
paper for links to more information about hunks.

Getting Comfortable with Git

Copyright 2020, Rick Borup Page 22 of 46

Viewing history

The git log command

The git log command displays the history of commits. There are many variations and
options for this command.

git log && the default format
git log --abbrev-commit && show abbreviated commit IDs
git log --oneline && show only one line for each commit

git log --graph && show history in graphical format
git log --graph --abbrev-commit && graphical, abbreviated commit IDs
git log --graph --oneline && graphical, one line per commit

With no options, git log displays the full log information.

>git log
commit 321dcd1bb3617f5c73d4da3624bbc8ae66da576e (HEAD -> develop)
Merge: 7d9363b 990d100
Author: Rick Borup <rborup@ita-software.com>
Date: Tue Aug 25 15:39:30 2020 -0500
 Merge branch 'myNewFeature' into develop

The --abbrev-commit option shows the short SHA-1 IDs instead of the long version.

>git log --abbrev-commit
commit 321dcd1 (HEAD -> develop)
Merge: 7d9363b 990d100
Author: Rick Borup <rborup@ita-software.com>
Date: Tue Aug 25 15:39:30 2020 -0500
 Merge branch 'myNewFeature' into develop

The --oneline option displays a condensed version of the log with abbreviated commit IDs
and only one line per commit.

>git log --oneline
321dcd1 (HEAD -> develop) Merge branch 'myNewFeature' into develop
990d100 finished work on my new feature
7cf40a6 still working on my new feature
f0389ab working on my new feature
7d9363b add line 3
3d71ff0 (master) add line 2
993bef2 Initial commit

Without the --graph option, the log is displayed in linear format, as in the example above.
The --graph option add branching and merging visualization to the log.

>git log --graph --oneline
* 321dcd1 (HEAD -> develop) Merge branch 'myNewFeature' into develop
|\
| * 990d100 finished work on my new feature
| * 7cf40a6 still working on my new feature

Getting Comfortable with Git

Copyright 2020, Rick Borup Page 23 of 46

| * f0389ab working on my new feature
|/
* 7d9363b add line 3
* 3d71ff0 (master) add line 2
* 993bef2 Initial commit

To see the revision history of a single file, pass the path and filename as a parameter to the
log command.

>git log --oneline -- readme.txt
c9d5a91 (HEAD -> master) Update for Southwest Fox 2020
bd5c751 Initial commit

Gitk

Git comes with a visual repository browser called gitk. It's a handy way to quickly explore a
repository, especially if you're not using a third-party Git GUI. Just run it from the command
line in any folder with a Git repository.

>gitk

Figure 3 is the output for the repository from the hunks example. Clicking on a commit in
the upper left panel displays information about the that commit in the lower panels.

Figure 3: Gitk is a visual repository browser that comes with Git.

__

Getting Comfortable with Git

Copyright 2020, Rick Borup Page 24 of 46

Bonus for VFP developers: gitk can also be launched from the Repository browser
item on the right-click menu in the treeview of Doug Hennig’s VFPX Project
Explorer. Documentation for gitk can be found at https://git-scm.com/docs/gitk.

__

Tagging history

A tag is a pointer to a commit. When you create a tag, you give it a name. From then on,
unless the tag is deleted, you can always refer to that specific commit by its tag name.

Tags can be used for any purpose. Common uses include marking milestones during
development, identifying release versions, etc. Git’s log output shows the tag name next to
the commit with which it’s associated. This makes it easy to identify important steps in the
evolution of a project’s changes when viewing the log.

Git provides for two types of tags, lightweight and annotated. Lightweight tags have only a
name while annotated tags also have meta data such a descriptive message. Suppose you’re
working on a new project and want to mark the point at which you showed your work in
progress to the client. This is a good use for a tag because it marks the point in the project’s
history where the client last saw the work and you know they haven’t seen anything past
that point (at least until you do the next demo).

Assuming HEAD points to the commit you want to tag, you can create a lightweight tag
named Demo1 like this:

git tag Demo1

or you can create an annotated tag like this:

git tag -a Demo1 -m 'As shown to client on 7/15/2020'

If development has proceeded past the commit you wish to tag—in other words, if HEAD
no longer points to the desired commit—you can tag an earlier commit by including its ID
in the command. The following applies the annotated tag named Demo1 to the commit
whose ID is e26eaeb.

git tag -a Demo1 e26eaeb -m 'As shown to client on 7/15/2020'

Running the git tag command with no arguments displays the list of tags.

> git tag
Demo1

As noted earlier, Git’s show command displays information about a Git object. For tag
objects it displays full information about the tag along with information about the commit,
including the commit message. In the following example the tag message and the commit
message are annotated for clarity.

https://git-scm.com/docs/gitk

Getting Comfortable with Git

Copyright 2020, Rick Borup Page 25 of 46

> git show Demo1
tag Demo1
Tagger: Rick Borup <rborup@ita-software.com>
Date: Fri Jul 17 15:36:57 2020 -0500
As shown to client on 7/15/2020 <-- tag message
commit e26eaeb20e171d64a4002c67465ab387b9b03de3 (HEAD -> master, tag: Demo1)
Author: Rick Borup <rborup@ita-software.com>
Date: Wed Jul 15 11:31:26 2020 -0500
 Last-minute cleanup for demo to client <-- commit message

This is followed by the diff information for the file(s) modified in that commit.

Tags are not automatically pushed to remote repositories, but you can push them by adding
the --tags option to the push command.

git push --tags origin

Branching and merging
A branch is a divergent line of development. Git makes branching easy by using the concept
of ‘lightweight’ branches, meaning branches can come into and go out of existence as
needed. Unlike some other version control systems, Git branches can be deleted from the
repository when they're no longer needed.

Git users make a distinction between long-lived branches and temporary or short-lived
branches. The latter are sometimes called feature branches because they typically exist
only for the duration of the development of a particular feature. You may also see them
referred to as topic branches.

The master branch is an example of a long-lived branch. Every Git repository has a master
branch, although in some repositories it may be called main or some other name. This
branch is automatically created when a repository is initialized. Unless you create other
branches, all commits are made on master.

How to change the name of the default branch

The default branch in Git has historically been called the master branch. Although it has
long been possible to change this to another name, most existing literature refers to it as
the master branch and my guess is most developers still use it that way, too.

These days, however, many developers prefer to use a more neutral name like main or
default. Changing the name of the master branch in an existing repository can be easily
done using the branch command's -m option.

git branch -m master main

If you’re working with a remote repository, make the corresponding change on the remote
by pushing the new main branch with the -u option to update the remote tracking branch.

git push -u origin main

Getting Comfortable with Git

Copyright 2020, Rick Borup Page 26 of 46

Scott Hanselman's blog post has additional information including what to do if someone
has a local clone of the repository. See
https://www.hanselman.com/blog/EasilyRenameYourGitDefaultBranchFromMasterToMai
n.aspx

That takes care of existing repositories, but what about new repositories? Do you always
have to start with master as the default and then change it? As of Git 2.28.0, the answer is
no.

What's new in Git 2.28.0

Git 2.28.0 introduced a new configuration option to specify a different name for the default
branch when creating a new repository. The following example shows how to configure Git
to use main as the default branch for new repositories going forward.

git config --global init.defaultBranch main

See the Highlights from Git 2.28 blog post at https://github.blog/2020-07-27-highlights-
from-git-2-28/ for more information about this and other new features.

Creating and switching branches

When you create a branch, you give it a name. You can use any name that conforms to the
Git reference format requirements.1

Branches are created using the branch command. It's important to remember that creating
a branch simply creates a new pointer in the Git repository, so you need to check out the
new branch before committing to it.

git branch develop && create a new branch named develop
git checkout develop && switch to the develop branch

The checkout command is also used to switch back and forth between existing branches.
Checking out a branch does two things: it switches to the other branch and it modifies the
working tree by restoring files to their state in that branch. Git 2.23.0 introduced two new
commands to separate these operations from one another.

What's new in Git 2.23.0

Git 2.23.0 introduced two new commands, git switch and git restore. These two commands
separate functions that are handled as one in the git checkout command.

Switch is for branches. It tells Git to change to a different existing branch or, with the -c
option, to create a new branch and switch to it one step. Like checkout, the switch command
modifies files in the working tree if their content in the branch is different.

git switch <branch name> && switch to existing <branch name>

1 See file:///C:/Program%20Files/Git/mingw64/share/doc/git-doc/git-check-ref-format.html

https://www.hanselman.com/blog/EasilyRenameYourGitDefaultBranchFromMasterToMain.aspx
https://www.hanselman.com/blog/EasilyRenameYourGitDefaultBranchFromMasterToMain.aspx
https://github.blog/2020-07-27-highlights-from-git-2-28/
https://github.blog/2020-07-27-highlights-from-git-2-28/
file:///C:/Program%20Files/Git/mingw64/share/doc/git-doc/git-check-ref-format.html

Getting Comfortable with Git

Copyright 2020, Rick Borup Page 27 of 46

git switch -c <new branch> && create and switch to <new branch>

Restore is for files. It restores a file or files in the working tree to a previous state. The
restore command takes a pathspec as a parameter. Without any other options, the restore
command restores the specified file(s) to their state in the HEAD of the current branch.
This is useful when you want to discard uncommitted changes. The restore command
modifies the working tree.

git restore -- <pathspec> && restore specified file(s) to their unmodified state

If the unwanted changes have already been committed, use restore with the --staged option
to unstage them. This option modifies both the working tree and the index.

git restore --staged -- <pathspec> && unstages the specified file(s)

The Git help file has more information about these two commands, and the release notes
for v2.23.0 describe the intent behind adding them – see
https://raw.githubusercontent.com/git/git/master/Documentation/RelNotes/2.23.0.txt.

When there is more than one branch in a repository, you can switch back and forth among
them as needed. For example, after committing changes to the develop branch you may
want to switch back to the master branch and merge develop into it.

__

Git does not allow you to switch branches if the working tree contains modified
files that would be overwritten. In this situation you must discard, stash, or
commit your modified files before switching to the other branch.

__

Branching strategies

Development branch

It's common practice, although by no means required, to create a branch named develop
and to use it for all development work. This separates development work from work that
has been released (or is at least ready for release). The develop branch is a long-lived
branch because it exists for the entire duration of the project.

The idea is to treat the master branch as the release branch. All commits are made on the
develop branch as work progresses, leaving the master branch unchanged. When ready to
release an update, the develop branch is merged back into the master branch and the
release is built from there. The commit from which the release is built can be tagged with a
version number to identify the release in the version history.

https://raw.githubusercontent.com/git/git/master/Documentation/RelNotes/2.23.0.txt

Getting Comfortable with Git

Copyright 2020, Rick Borup Page 28 of 46

Feature branches

Beyond that it's up to each team how to create and employ whatever branching strategy
works best for them. Short-lived branches can be created as needed for feature
development, hot fixes, experimentation, or any other purpose.

The advantage of a using feature branches is that the develop branch remains unchanged
until the feature under development is either merged back in or abandoned. Git’s
lightweight branching model makes it easy to delete a feature branch once work on that
feature is complete.

One common practice is to preface the name of a feature branch with the word feature, as
in feature-MyAwesomeIdea or feature/MyAwesomeIdea, but this is not required. Using a
slash creates a hierarchical representation of the feature branch structure when viewed in
some Git GUIs.

Issue branches

For projects where issue tracking is being used, separate branches might be created for the
work being done to address each issue. Issue branches are like feature branches, although
typically narrower in scope. Issue branches can be created off the development branch or
off a feature branch, or wherever else is appropriate. They might have a name like Issue-23
for work being done to address issue #23. Like feature branches, issue branches are short-
lived and can be deleted when work is complete.

Experimental branches

Developers often want to explore an idea to see if it pans out. Doing so may require making
changes to existing code or adding new code that won't be kept unless the experiment
works out. Git's lightweight branching model enables developers to create branches at any
time for any reason. If the work committed on an experimental branch is going to be kept,
the branch can be merged back in to mainstream development. If, on the other hand, the
work committed on the experimental branch is to be discarded the branch can simply be
deleted.

Hotfix branches

It's no surprise that bugs sometimes make it through to release versions of software. By the
time a bug is discovered and reported, development may have continued beyond the
release version. In this situation, one solution is to switch to the release branch, create a
hotfix branch to fix the bug, merge the hotfix branch back into the release branch, and
release an update. The hotfix branch can then also be merged into the current development
branch to ensure that the bug does not resurface with the next release.

Merging

At some point, work done on a branch typically needs to be brought back into its parent
branch. That's what merges are for.

The workflow goes like this:

Getting Comfortable with Git

Copyright 2020, Rick Borup Page 29 of 46

• Create a new branch for your work and switch to it

• Do some work, making commits to your working branch along the way

• If the work is simply an experiment and you decide not to keep it, switch to the
parent branch and delete the working branch.

• If the work is ready to be integrated into mainline development, switch to the
parent branch and merge the working branch. The working branch can then be
deleted or kept, whichever you prefer.

Example of merging

Before beginning development on a new feature, it's a good idea to check the status of the
repository to confirm you're on the desired branch and that there are no uncommitted
modified files in your working tree.

>git status
On branch develop && you're on the develop branch
nothing to commit, working tree clean && there are no modified files

Create and switch to a new branch to work on a new feature.

>git switch -c myNewFeature && create and switch to myNewFeature branch
Switched to a new branch 'myNewFeature'

Cycle through the modify-and-commit cycle as many times as necessary.

(do some work)
>git add .
>git commit -m 'working on my new feature'

(do some more work)
>git add .
>git commit -m 'still working on my new feature'

(finish the work)
>git add .
>git commit -m 'finished work on my new feature'

At some point, the work is done and ready to be merged back into mainline development.
Best practice is to view the log to confirm what's been committed and what will be merged.
In Listing 6, note that HEAD points to the myNewFeature branch (top line) and is three
commits ahead of the develop branch (bottom line).

Listing 6: The starting point for merging the myNewFeature branch into the develop branch.

>git glog && alias for log --graph --oneline
* 4dd37b2 (HEAD -> myNewFeature) finished work on my new feature
* 3771bdc still working on my new feature
* 6d5b398 working on my new feature
* 0d4c6e9 (develop) add line 3

Getting Comfortable with Git

Copyright 2020, Rick Borup Page 30 of 46

Switch to the develop branch.

>git switch develop
Switched to branch 'develop'

Merge the myNewFeature branch into develop. Note the reference to Fast-forward on the
third line. We'll come back to that in a minute.

Listing 7: The output from the merge command.

>git merge myNewFeature
Updating 0d4c6e9..4dd37b2
Fast-forward
 foo.txt | 3 +++
 1 file changed, 3 insertions(+)

View the log again to confirm the results of the merge are what you expected. Note that the
HEAD reference now points to the same commit for both the develop branch and the
myNewFeature branch.

Listing 8: The after merging the myNewFeature branch into the develop branch.

>git glog
* 4dd37b2 (HEAD -> develop, myNewFeature) finished work on my new feature
* 3771bdc still working on my new feature
* 6d5b398 working on my new feature
* 0d4c6e9 add line 3

You can stop here and everything will be fine going forward. The reference to the
myNewFeature branch will, however, remain in the repository and will continue to show up
in the log. If desired, you can get rid of the branch reference by deleting the branch. The
branch command has a -d option for this.

>git branch -d myNewFeature
Deleted branch myNewFeature (was 4dd37b2).

After deleting the myNewFeature branch, history is the same as before only without the
reference to the deleted branch.

Listing 9: The log after deleting the myNewFeature branch.

>git glog
* 4dd37b2 (HEAD -> develop) finished work on my new feature
* 3771bdc still working on my new feature
* 6d5b398 working on my new feature
* 0d4c6e9 add line 3

Some developers like to delete references to obsolete branches because it cleans up history.
Others feel deleting branches removes a potentially important piece of the history of
development. Git doesn't really care, other than to the extent those branch objects continue
to exist in the repository, so take your pick.

Getting Comfortable with Git

Copyright 2020, Rick Borup Page 31 of 46

Types of merges

Git has three types of merges: fast-forward, commit merge, and squash merge. A fourth, the
rebase merge, is different than the other three and is not discussed here.

Git defaults to a fast-forward merge whenever it can. If there have been no changes on the
parent branch to the files being merged, then all Git needs to do is to modify the HEAD
reference of the target branch to point to the same commit as the HEAD of the branch being
merged. A fast forward merge does not generate a new commit, and you won't see a
branching structure reflected in the graphical log because the history of development is
linear.

If you want the history to reflect the branching structure, use the --no-ff option with the
commit command. This tells Git not to do a fast forward but to use a commit merge instead.
The process begins with the state of the repository in Listing 6 but adds the --no-ff option
to the commit command.

Listing 10: Performing a no-fast-forward merge.

>git switch develop
>git merge --no-ff myNewFeature
Merge made by the 'recursive' strategy.
 foo.txt | 3 +++
 1 file changed, 3 insertions(+)

The log now reflects a branching structure, as show in Listing 11.

Listing 11: The log after the no-fast-forward merge of the myNewFeature branch into the develop branch.

>git glog
* 321dcd1 (HEAD -> develop) Merge branch 'myNewFeature' into develop
|\
| * 990d100 (myNewFeature) finished work on my new feature
| * 7cf40a6 still working on my new feature
| * f0389ab working on my new feature
|/
* 7d9363b add line 3

Can the myNewFeature branch be safely deleted after a no-fast-forward merge? The answer
is yes, although, as before, doing so removes the reference to the branch from history and
in the case makes it difficult for anyone reading the history later to know what was done to
create the branching structure in the first place.

Listing 12: The log after deleting the myNewFeature branch following a merge commit.

>git glog
* 321dcd1 (HEAD -> develop) Merge branch 'myNewFeature' into develop
|\
| * 990d100 finished work on my new feature
| * 7cf40a6 still working on my new feature
| * f0389ab working on my new feature
|/

Getting Comfortable with Git

Copyright 2020, Rick Borup Page 32 of 46

* 7d9363b add line 3

The third type of merge is a squash merge. There may be times when you want to merge a
feature branch back into the mainline development work, but you don't want the history to
reflect all the steps along the way. As its name implies, a squash merge squashes all the
commits in the branch being merged into a single commit on the target branch.

Starting from same point in Listing 6 as the previous two examples, a squash merge is
performed as follows.

>git switch develop
>git merge --squash myNewFeature
Updating 7d9363b..990d100
Fast-forward
Squash commit -- not updating HEAD
 foo.txt | 3 +++
 1 file changed, 3 insertions(+)

The output shows a fast-forward merge was used, but the difference here is that foo.txt, in
its final state on the myNewFeature branch, has been added to the index as a staged file and
still needs to be committed. This can be seen by running the status command.

>git status
On branch develop
Changes to be committed:
 (use "git restore --staged <file>..." to unstage)
 modified: foo.txt

To complete the squash merge, do a commit in the normal way and provide a commit
message.

>git commit -m 'add my new feature'
[develop 6727ec6] add my new feature
 1 file changed, 3 insertions(+)

The log now shows only the single "squashed" commit instead of the three that were
actually used in the development of the new feature. Compare Listing 13 to Listing 12 (the
commit merge) and to Listing 9 (the fast-forward merge) to see how the three different
types of commits result in different histories for the same set of changes.

 Listing 13: The log after doing a squash commit.

>git glog
* 6727ec6 (HEAD -> develop) add my new feature
* 7d9363b add line 3

Merge conflicts

A merge conflict occurs when there are different changes to the same section of the same
file in the two sources being merged. Git can sometimes resolve merge conflicts by itself,
but when it cannot then developer intervention is required.

Getting Comfortable with Git

Copyright 2020, Rick Borup Page 33 of 46

What a merge conflict occurs, it's helpful to think about your version of the code as "ours"
and the incoming version of the code as "theirs". There are three ways to resolve a merge
conflict:

• Keep your version of the code ("ours")

• Accept the incoming version of the code ("theirs")

• Edit the file and resolve the conflict manually, usually resulting in a combination of
"ours" and "theirs".

If you decide to take the first or second option, Git lets you pass one or the other of those
two terms as options to the checkout command.

git checkout --ours && keep our version of the file and discard theirs
git checkout --theirs && keep their version of the file and discard ours

If you decide on the third option you can open the file in any appropriate editor to view the
conflicting areas and modify them as appropriate. If you like to use a merge tool you can
invoke it from the command line. If a merge tool has been configured, Git opens it.
Otherwise you can specify the desired merge tool on the command line.

git mergetool -- path/to/file

Once the conflict is resolved, tell Git to continue the merge.

git merge --continue

If a merge detects conflicts in more than file, handle each file individually.

If you decide you cannot resolve the conflict or want to defer the merge to a later time,
perhaps after you've had more time to think about how to resolve it and/or to consult with
other team members, you can abort the merge.

git merge --abort

__

Merge conflicts can arise when popping a stash entry, too. In this context, "ours"
refers to the version in the working tree while "theirs" refers to the version in the
stash. The conflict can be resolved in the same way as when merging branches.

__

Remote repositories
A remote repository is any repository for a given project other than your local repository.
Remote repositories can be located anywhere but are most often hosted on some shared
resource—typically an in-house server, a cloud server, or a hosting service such as GitHub
or Bitbucket—that is accessible by all the developers working on a project.

Getting Comfortable with Git

Copyright 2020, Rick Borup Page 34 of 46

Remote repositories are usually bare repositories. A bare repository is a repository with no
working tree. It does not need one because people do not work on it directly. Instead,
developers commit their work to their local repositories and push it to the remote, from
which other developers can then pull.

Remote tracking branches

Git uses remote tracking branches as the link between a branch in a local repository and the
corresponding branch in a remote repository. It's worth noting that a local repository can
contain local branches that do not exist on the remote, and a remote repository can contain
branches the local is not tracking – i.e., for which there are no remote tracking branches.

When run with no options, Git's branch command lists only local branches, such as master
and develop.

>git branch
* develop
 master
 test

Include the -a (short for --all) option to include remote tracking branches in the list. In this
example the local repository has remote tracking branches for all three local branches,
linked to a remote named origin.

>git branch -a
* develop
 master
 test
 remotes/origin/develop
 remotes/origin/master
 remotes/origin/test

Clones and the origin

The git clone command creates a copy of a repository. Anyone with access and the
appropriate credentials can clone a repository.

git clone <source> [<target>]

Git creates remote tracking branches in the local clone linking it back to its source. Git
thinks of the source of the clone as the origin of the clone and uses that term in the name it
assigns to the remote tracking branches in the local repository.

The git remote command lists the remotes to which a local repository is linked. Without
any options it simply displays the name of the remote(s).

>git remote
origin

Getting Comfortable with Git

Copyright 2020, Rick Borup Page 35 of 46

Add the -v option (short for --verbose) to see the complete reference to the remote. In this
example the remote is named myRepo located in a folder named GitCentral on the same
hard drive as the local repo.

>git remote -v
origin C:/GitCentral/myrepo (fetch)
origin C:/GitCentral/myrepo (push)

Adding and removing remotes

The syntax of the command for adding a link to a remote repository is

>git remote add <name> <url>

The URL is often an online link to a repository stored on GitHub or another cloud-based
service but can also be a simple drive/path/folder.

>git remote add myRemote path/to/myRemote
>git remote -v
myRemote path/to/myRemote (fetch)
myRemote path/to/myRemote (push)

Remotes that are no longer needed can be removed from the local.

>git remote remove myRemote

Adding and removing remote tracking branches

If necessary, you can create remote tracking branches manually with the git remote
command.

You might choose to delete a local branch when you're done working with it. If you don't
need the test branch in your local repository anymore, you can delete it with

>git branch -d test

Deleting a local branch does not delete the corresponding remote tracking branch if one
exists. In this example the local branch named test was deleted but the remote tracking
branch remains.

>git branch -a
* develop
 master
 remotes/origin/develop
 remotes/origin/master
 remotes/origin/test

Add the -r (short for --remotes) option to the branch delete command to delete a remote
tracking branch.

>git branch -d -r origin/test
Deleted remote-tracking branch origin/test (was 855931c).

Getting Comfortable with Git

Copyright 2020, Rick Borup Page 36 of 46

> git branch -a
* develop
 master
 remotes/origin/develop
 remotes/origin/master

Working with remote repositories

The three basic commands for working with a remote repository are push, fetch, and pull.

The push command uploads objects from a branch in the local repository to the
corresponding branch on a remote repository. The fetch command works in the opposite
direction, detecting and downloading objects not yet in the local repository from a branch
on a remote repository. The objects fetched from the remote are stored in the local
repository but are not automatically merged; they must be explicitly merged into the local
branch. The pull command combines both fetch and merge into one command.

Push

After work has been committed to a branch on the local repository, the developer can push
it to a remote that is linked via a remote tracking branch.

>git push origin develop && push local changes on the develop branch to the remote

If the local repository from which the changes are being pushed was cloned from the
remote, the link between the two and the remote tracking branch were automatically
created by the cloning operation. If not, the link and the remote tracking branch can be
created manually, first by adding a remote named origin and then pushing with the -u
(short for --set-upstream) option.

>git remote add origin <URL to remote> && URL can be HTTP or local drive/path/folder
>git push -u origin develop && push local changes on the develop branch to the
 develop branch on the origin remote

Fetch

Fetch is used to retrieve new objects from a remote repository with merging them into the
local. If there are newer objects on the remote, Git downloads them into the remote
tracking branch in the local repository and displays information about what was fetched.

In the following example, the last line shows that commits between 0d4c6e9 and 4dd37b2
were fetched from the develop branch on the remote and stored in the remote tracking
branch named origin/develop in the local repo.

>git fetch origin develop && fetch new objects on the develop branch from the remote
remote: Enumerating objects: 11, done.
remote: Counting objects: 100% (11/11), done.
remote: Compressing objects: 100% (5/5), done.
remote: Total 9 (delta 1), reused 0 (delta 0), pack-reused 0
Unpacking objects: 100% (9/9), 759 bytes | 2.00 KiB/s, done.
From C:/GitCentral/myrepo
 0d4c6e9..4dd37b2 develop -> origin/develop

Getting Comfortable with Git

Copyright 2020, Rick Borup Page 37 of 46

At this point you may want to examine what was fetched before deciding whether to merge
it. A Git GUI may provide a visual way to look at the incoming changes. From the command
line, the log command can be used to display them. In this example, the develop branch is
compared to the remote tracking origin/develop branch showing four commits were
fetched.

> git log develop..origin/develop
commit 4dd37b27bb35a488aaf07e8c4b339116b540d5e5 (origin/develop)
Author: Rick Borup <rborup@ita-software.com>
Date: Tue Aug 25 14:51:16 2020 -0500
 finished work on my new feature
commit 3771bdcaa89c4ee701927d88e5586def42c33f94
Author: Rick Borup <rborup@ita-software.com>
Date: Tue Aug 25 14:50:40 2020 -0500
 still working on my new feature
commit 6d5b39886daaee80fe79a331ae3c39f21def5451
Author: Rick Borup <rborup@ita-software.com>
Date: Tue Aug 25 14:49:44 2020 -0500
 working on my new feature
commit 0d4c6e99a97ecc253988827facebcd1222706df4
Author: Rick Borup <rborup@ita-software.com>
Date: Sun Jul 19 16:50:40 2020 -0500
 add line 3

or in short log form

> git glog develop..origin/develop
* 4dd37b2 (origin/develop) finished work on my new feature
* 3771bdc still working on my new feature
* 6d5b398 working on my new feature
* 0d4c6e9 add line 3

Use the git merge command to merge the changes on the origin/develop remote tracking
branch with the local develop branch.

> git merge origin/develop
Updating c8c2bd1..4dd37b2
Fast-forward
 foo.txt | 4 ++++
 1 file changed, 4 insertions(+)

Pull

The git pull command performs the fetch and merge in a single step.

>git pull origin develop

The advantage is simplicity. The disadvantage is not knowing what will be merged before it
happens.

As with any merge, conflicts may arise when merging changes from a remote.

Getting Comfortable with Git

Copyright 2020, Rick Borup Page 38 of 46

Git GUIs
There are several GUI tools for working with Git. Git itself comes with one called, not
surprisingly, Git GUI. You'll find a list of other GUIs for Windows on the Git website at
https://git-scm.com/download/gui/win. Standard features include a graphical view of
history and a mechanism to stage and commit changes, view differences, create and
manage branches, and push and pull from remotes.

You can use a Git GUI by itself or in combination with command line GUI. My personal
preference is to use both. Sometimes—in fact, most of the time—I find it easier and more
efficient to run Git from the command line. Keep a terminal session open while you work
and command line Git is always available. Other times the GUI can be helpful, particularly
when dealing with commits involving several files, because you can click on file names to
stage, discard, or un-stage them instead of needing to type their individual file names or
pathspecs into the command line.

Sourcetree

Sourcetree is a free Git GUI from Altassian. Figure 4 shows how the file history for the
repository from the earlier 'commit merge' example looks in Sourcetree. Note the graphical
representation of the branch and merge portion of the history.

Sourcetree has both a light and a dark mode. The dark mode is easier on the eyes but
doesn't reproduce as well for publication, so these screenshots are in light mode.

https://git-scm.com/download/gui/win

Getting Comfortable with Git

Copyright 2020, Rick Borup Page 39 of 46

Figure 4: Sourcetree's history pane display the commit log in graphical format.

Click File Status in the upper left pane to see the status of the repository. This is equivalent
to running git status from the command line. In Figure 5, Sourcetree shows that there are
no uncommitted files and the working tree is clean.

Getting Comfortable with Git

Copyright 2020, Rick Borup Page 40 of 46

Figure 5: Sourcetree's file status pane shows modified files. In this case the working tree is clean.

After making changes to a file or files in the working tree, Sourcetree File Status displays
several panes to help you view differences, stage files, and commit them. In Figure 6, foo.txt
has been modified but not yet staged so it appears in the Unstaged files pane. Clicking on a
file selects it. Foo.txt is selected so the diff of its changes is displayed in the upper right. The
Unstaged files pane also shows a new file, readme.md, that is not yet tracked.

The Stage All button stages all unstaged files in a single step. The Stage Selected button is
useful when you want to selectively stage and commit some but not all the unstaged files.
The current branch is shown in bold on the left to help you confirm you're on the branch
you want to commit to.

Getting Comfortable with Git

Copyright 2020, Rick Borup Page 41 of 46

Figure 6: Use the Stage All or Stage Selected buttons to stage the desired files.

One feature of Sourcetree that's especially useful is the ability to create custom actions. VFP
developers can for example create a custom action to run FoxBin2Prg from the context
menu within Sourcetree when staging changes to be committed.

In my own work the need for this custom action lessened considerably after Doug Hennig
integrated Git and FoxBin2Prg into his VFPX Project Explorer, but the custom action is still
nice to have available. Figure 7 shows the dialog for creating a FoxBin2Prg custom action in
Sourcetree.

Getting Comfortable with Git

Copyright 2020, Rick Borup Page 42 of 46

Figure 7: The custom action for running FoxBin2Prg in interactive mode from the Sourcetree context menu.

Sourcetree is available for download from https://www.sourcetreeapp.com/.

Summary
Git can be complicated but it need not be scary. Whether you prefer command line Git or a
Git GUI, the key is to use it as often as you can. Appendix B summarizes the Git commands
presented in this paper, the ones you'll use most often in your daily workflow. Master these
basic operations and you'll be well on your way to getting comfortable with Git.

Resources

Papers

Multi-track Development Strategies in DVCS, Rick Borup, Southwest Fox 2013
http://bit.ly/NHgonB

https://www.sourcetreeapp.com/
https://bitbucket.org/mattslay/gofish4

Getting Comfortable with Git

Copyright 2020, Rick Borup Page 43 of 46

Version Control Face-off – Git vs Mercurial, Rick Borup, Southwest Fox 2015
http://bit.ly/1VspWTJ

Migrating to Git from Mercurial, Rick Borup, Southwest Fox 2019
http://bit.ly/foo

Online

Pro Git (online version of the book by Scott Chacon and Ben Straub)
https://git-scm.com/book/en/v2

Git Documentation
https://git-scm.com/docs

Git Manual (MAN) pages – local hard drive
file:///C:/Program%20Files/Git/mingw64/share/doc/git-doc/

Atlassian Git Tutorials
https://www.atlassian.com/git/tutorials

Git Branching – Branches in a Nutshell
https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell

Git Do’s and Don’ts
https://blog.axosoft.com/git-dos-donts/

15 Git Commands You May Not Know
https://dev.to/zaiste/15-git-commands-you-may-not-know-4a8j

An explanation of all the possible responses to the stash prompt
https://stackoverflow.com/questions/1085162/commit-only-part-of-a-file-in-
git/1085191#1085191

What is a hunk?
https://stackoverflow.com/questions/37620729/in-the-context-of-git-and-diff-what-is-a-
hunk

http://www.gnu.org/software/diffutils/manual/html_node/Hunks.html

Books

Version Control with Git, Second Edition by Jon Loeliger and Matthew McCullough (O’Reilly),
Copyright 2012 Jon Loeliger, ISBN 978-1-449-31638-9

Git Pocket Guide by Richard E. Silverman (O’Reilly), Copyright 2013 Richard Silverman,
ISBN 978-1-449-32586-2

https://bitbucket.org/mattslay/gofish4
http://bit.ly/foo
https://bitbucket.org/mattslay/gofish4
https://bitbucket.org/mattslay/gofish4
https://bitbucket.org/mattslay/gofish4
https://bitbucket.org/mattslay/gofish4
https://bitbucket.org/mattslay/gofish4
https://blog.axosoft.com/git-dos-donts/
https://dev.to/zaiste/15-git-commands-you-may-not-know-4a8j
https://stackoverflow.com/questions/1085162/commit-only-part-of-a-file-in-git/1085191#1085191
https://stackoverflow.com/questions/1085162/commit-only-part-of-a-file-in-git/1085191#1085191
https://stackoverflow.com/questions/37620729/in-the-context-of-git-and-diff-what-is-a-hunk
https://stackoverflow.com/questions/37620729/in-the-context-of-git-and-diff-what-is-a-hunk
http://www.gnu.org/software/diffutils/manual/html_node/Hunks.html

Getting Comfortable with Git

Copyright 2020, Rick Borup Page 44 of 46

Jump Start GIT by Shaumik Daityari, Copyright 2015 SitePoint Pty. Ltd., ISBN 978-0-
9943469-2-6 (ebook)

Biography
Rick Borup is owner and president of Information Technology Associates, LLC, a professional
software development, computer services, and information systems consulting firm he
founded in 1993. Rick earned BS and MBA degrees from the University of Illinois and spent
several years developing software applications for mainframe computers before turning to PC
database development tools in the late 1980s. He began working with FoxPro in 1991 and has
worked full time in FoxPro and Visual FoxPro since 1993. He is a co-author of the books
Deploying Visual FoxPro Solutions and Visual FoxPro Best Practices for The Next Ten Years.
He has published articles in FoxTalk, FoxPro Advisor, and FoxRockX and is a frequent speaker
at Visual FoxPro conferences and user groups. Rick is a Microsoft Certified Solution Developer
(MCSD) and a Microsoft Certified Professional (MCP) in Visual FoxPro.

Copyright © 2020 Rick Borup. Windows® is a registered trademark of Microsoft Corporation
in the United States and other countries. Git and the Git logo are either registered trademarks
or trademarks of Software Freedom Conservancy, Inc., corporate home of the Git Project, in
the United States and/or other countries. Linux® is the registered trademark of Linus
Torvalds in the United States and other countries. All other trademarks are the property of
their respective owners.

Getting Comfortable with Git

Copyright 2020, Rick Borup Page 45 of 46

Appendix A
To configure a global (per-user) exclusion file, create a .gitignore file with the usual syntax
and store it in your user profile folder, which is C:\Users\<user name> on a Windows
machine. This is the same folder where your global Git configuration file is stored.

For example, you can tell Git to ignore ZIP files in any working tree with a .gitignore file as
follows. Because it's global, you no longer need to include *.zip and *.ZIP in each project's
exclusion file.

Listing 14: A .gitignore file to ignore all ZIP files.

*.zip
*.ZIP

Tell Git where to find the global exclusion file by running the following command from the
command prompt:

>git config --global core.excludesFile "C:\Users\<username>\.gitignore"

The generic format of that command from the Windows command prompt is

>git config --global core.excludesFile "%USERPROFILE%\.gitignore"

or, if you're working from PowerShell,

>git config --global core.excludesFile "$Env:USERPROFILE\.gitignore"

Thanks to https://stackoverflow.com/questions/7335420/global-git-ignore for some of
this information.

https://stackoverflow.com/questions/7335420/global-git-ignore

Getting Comfortable with Git

Copyright 2020, Rick Borup Page 46 of 46

Appendix B
A list of the essential Git commands and when you use them.

git init && to create a new repository

git config && to tell Git who you are and to configure how it works

git add && to add a new or modified file to the repository

git status && to see the current state of the working tree

git commit && to record a set of changes in the repository

git ls-files && to list files in the index and the working tree

git log && to see the history of changes

git diff && to see what's different between two versions

git show && to see information about a Git object

git branch && to list branches, create a new branch, or delete an existing branch

git checkout && to switch to another branch

git switch && to switch to another branch or create a new one

git restore && to restore a file to a previous state

git merge && to merge one branch into another

git stash && to save your changes without committing them

git rm && to remove a file from the working tree and the index

git clone && to make a copy of another repository

git remote && to configure or list remote repositories

git push && to upload changes to a remote repository

git fetch && to download changes from a remote repository

git pull && to downoad and merge changes from a remote repository in one step

git help && to see the Git manual page for a command

	Introduction
	You will learn
	Notes on the syntax of sample code

	How Git sees the world
	Command line Git
	Options
	Parameters
	Path and file names

	Configuring Git
	The basic settings
	Tools
	File editor
	Diff tool
	Merge tool

	Other settings
	Aliases
	Listing configuration settings
	Getting help

	Local workflow
	Special considerations for VFP
	Include only the binary files
	Include only the text-equivalent files
	Include both the binary files and the text-equivalent files

	Inspecting differences
	What was changed in a commit?
	Inspecting the history of a file

	Staging
	Committing
	Partial commits
	Staging selected files
	Stashing changes
	Working with hunks

	Viewing history
	The git log command
	Gitk

	Tagging history

	Branching and merging
	How to change the name of the default branch
	What's new in Git 2.28.0

	Creating and switching branches
	What's new in Git 2.23.0

	Branching strategies
	Development branch
	Feature branches
	Issue branches
	Experimental branches
	Hotfix branches

	Merging
	Example of merging
	Types of merges
	Merge conflicts

	Remote repositories
	Remote tracking branches
	Clones and the origin
	Adding and removing remotes
	Adding and removing remote tracking branches
	Working with remote repositories
	Push
	Fetch
	Pull

	Git GUIs
	Sourcetree

	Summary
	Resources
	Papers
	Online
	Books

	Biography
	Appendix A
	Appendix B

