Framework Fundamentals

This paper was originally presented at the Southwest Fox conference in Mesa, Arizonain
October, 2007. http://www.swfox.net

Framework Fundamentals

Session Number 8

Rick Borup

Information Technology Associates
701 Devonshire Drive, Suite 127
Champaign IL 61820

Voice: 217.359.0918

Email: rborup@ita-software.com

In the same way design patterns provide a structure to help you solve common design problems,
frameworks provide a structure to help you build a complete software application. Most
applications share a number of thingsin common: menus, forms, toolbars, methods for
rendering reports, retrieving and updating data, etc. A framework provides a standardized
structure for these components and a standar dized approach to managing the interactions
between them. Whether you intend to use a full-featured commercial framework or just want to
create a simple one of your own, understanding what a framework is and what it’s intended to do
will help you become a better developer.

© 2007 Rick Borup Page 1 of 38

Framework Fundamentals

Introduction

What this session is

This session explores the fundamental concepts involved in building a framework for Visua
FoxPro applications. It is part of the "Reviewing VFP Fundamentals’ track of the conference, and
istherefore geared toward entry-level programmers or those new to Visual FoxPro. However,
experienced Visua FoxPro developers who have never used a framework may find the material
useful aswell.

What this session is not

Although this session shows you how to build a simple framework for Visual FoxPro applications,
it isnot a comprehensive tutorial on building your own framework nor isit an introduction to or
overview of any of the commercial frameworks for Visua FoxPro. The materia in thissession is
not intended to be representative of any commercia framework, and the techniques presented
here may or may not be similar to those used by any of the commercia frameworks. If you are
interested in information about a particular commercia framework for Visua FoxPro application
development, I've included some links in the Resources section at the end of this paper that you
may find helpful.

What is a framework

A framework for software application development is like a bucket of partsthat can be fit
together to form awhole. Each part is designed to fulfill a particular purpose and to interact with
other parts in aknown manner. Although specific to their framework, the parts of any given
framework are generic enough that they can be put together in a wide variety of ways to create
many different types of applications.

Most everyone is familiar with LEGOs, the popular children's construction toy. The little red
LEGO bricks and other parts can be found in the play rooms and living rooms of homes around
the world. One reason they're so popular is that they're fun, easy to work with, and can be used to
build awide variety of toy structures. Adults love them, too. If you've ever been to
LEGOLAND® you know what | mean—there you can find an amazing variety of intricate and
often life-sized structures built from tens or hundreds of thousands of small LEGO parts.

Y ou can think of a software application framework as analogous to a bin full of LEGO parts.
Each part performs only one function, but can be connected to other partsto create large and
complicated structures. In other words, a brick is aways abrick but it can become part of awall
or part of a spaceship. A software framework is smilar in that there are a variety of parts, each of
which is designed to perform essentially one function but which can employed for specific
purposes and combined with other parts to create entire applications.

Visua FoxPro applications typically consists of a set of class libraries and an underlying
conceptual structure for tying them together into a working application. Like applications created
with other development tools, Visual FoxPro applications typically need menus, forms, toolbars,
reports, data access capabilities, and so on. Correspondingly, a Visua FoxPro application
framework typically has classes for creating, managing, and coordinating the interaction between

© 2007 Rick Borup Page 2 of 38

Framework Fundamentals

the various controls, menus, forms, toolbars, reports, data access components, etc. used in any
given application.

Although Visua FoxPro is an object-oriented language, it has procedural roots. Therefore it's not
uncommon for aframework to have some procedural bits as well as class libraries. Regardless of
whether the pieces are classes or procedures, within any given framework they are designed
according to some conceptual structure that governs how they work with one another. Thisis
analogous to the size and shape of the little round knobs on top of a LEGO brick, which are
designed to align with and fit precisely into the holes on the underside of other LEGO bricks.

While they can be used to build just about anything, things built with LEGOs have a particular
look and feel that's easily distinguishable from things built with other types of construction toys.
For example, it's easy to distinguish a toy house built with LEGOs from one built with Tinker
Toysor Lincoln Logs®. In the same way, software applications built with any given framework
tend to have asimilar look and feel to their user interface, so it's generally easy to distinguish
applications built with one framework from applications built with another.

Why do | need a framework

The short answer to the question "Why do | need aframework” is, you don't need a framework.
The better answer isthat using aframework frees you from the drudgery of creating and hooking
up the basic plumbing for every application you build, thus alowing you focus your attention on
the business solution instead of the mechanics. A framework enables you to build applications
more quickly and more reliably.

If you use a commercia application framework you will spend a good deal of time learning it, but
once you become adept at using it you can be more productive than if you build each application
from scratch. If you decide to build your own framework you will spend a good deal of time
designing, building, and enhancing it, but in the end you will have a framework that does things
exactly they way you want it to. You will also have a very thorough understanding of how it
works because you built it from the ground up. Either way, once you have a good framework and
know how to use it, you can deliver solid, working applications in a shorter time than without
one.

If you build alot of applications without using a framework, you will tend to find yourself doing
many of the structural things for each application in the same way every time. This only makes
sense: If you've solved a problem once, why invent a different solution the next time? Because of
this, you will over time tend to create a de facto framework of your own, even if you don't
conscioudy set out to do so.

Value of a framework for beginners

It's reasonable to ask, should a beginning Visual FoxPro programmer attempt to learn a
framework right away? | think for the beginner, it's a double-edged sword: On one hand, using a
framework most likely makes it possible for the new programmer to deliver aworking app more
quickly than would otherwise be possible. On the other hand, if a new programmer learns a
framework at the same time he or sheislearning Visual FoxPro itsdlf, it may be difficult to
distinguish what VFP can do natively from how the framework doesit. The "ahal” moment may

© 2007 Rick Borup Page 3 of 38

Framework Fundamentals

not come until later, when the programmer is exposed to another way of implementing a solution
and realizes the framework they first learned provided one way of doing it but not necessarily the
only way. Theideal scenario is probably for the beginning programmer to gain afarly
comprehensive understanding of Visual FoxPro core concepts and a working familiarity with the
language before attempting to learn a full-fledged commercia framework.

In researching this session, | came across the following comments about frameworks in the VFP
Rookie Mistakes topic on the FoxPro Wiki." | think it's well written I'd like to quote it here
verbatim. Several people contributed to this topic on the Wiki; some of them left their names, but
unfortunately this particular section is un-attributed so | can't give the author the credit he or she
deserves.

"Study a framework. It will show you how things can be done, as well as how to avoid the pitfalls of
VFP. Visual Maxframe has a shareware version on their web site that is a worthwhile study. Also, the
original Codebook is freely available and worth alook. You may decide that using aframework is
worthwhile. It usually is, except for the simplest of projects.

"Don't expect to be successful with any framework until you've first learned a considerable amount
about OOP, data buffering, the database container and the VFP designers. With or without a
framework you need to have afair amount of VFP knowledge before you can be successful.

"Hold the chainsaw by the correct end. Frameworks took years to design, build and refine, and will

take time to master. Use the framework asit was intended. On your early outings, do things the way the
framework expects you to, or you'll be treading uncharted territory where side-effects can make the
framework your adversary. Asyou learn the intricacies of the tool, you can start to cautiousy
experiment with going outside the lines."

Concepts for framework development

This section introduces what a framework should be expected to do and what it should not be
expected to do. It then looks in some detail at the concept of Visual FoxPro classes and
subclasses, which are the fundamenta building blocks of a framework. It wraps up with a
discussion of what belongs in an application’'s main program, which is a precursor to building a
framework.

What should a framework be expected to do

A software framework should be expected to provide all of the classes, procedures, templates,
and other bits necessary to construct a working application. A framework might aso include an
application generator the developer can run to create a skeleton application, or base application,
to use as the starting point for every application. For Visual FoxPro, this skeleton app takes the
form of a VFP project file referencing all of the necessary parts to build a functioning app, but
without any of the application-specific bits such as data, forms, custom menus, reports, and so on.

! http://fox.wikis.com/we.dll 2Wiki~V FPRookieMistakes

© 2007 Rick Borup Page 4 of 38

Framework Fundamentals

Idedlly, aframework should aso provide tools making it easy for the devel oper to add
application-specific resources to the project, and to enable the devel oper to easily subclass the
framework's base classes to implement enhancements and customized behaviors.

Findly, no framework should be considered complete without full documentation explaining the
design concepts employed by the framework designers and documenting the structure of and
interrelationship between the classes, procedures, and other parts comprising the framework.

What should a framework not be expected to do

A framework should not be expected to create a working application for a specific purpose
without modification by the developer. Frameworks are by definition generic. If aframework
were designed to create only one specific type of application, that framework's usefulness would
be severdy limited.

A developer using a framework needs to learn how to use the framework as a tool for creating
individual applications for specific purposes. The framework frees the developer from having to
construct and hook up the basic plumbing for every application from scratch, thereby enabling the
developer to spend time more productively by concentrating on the tasks required to customize
and enhance the app for each specific purpose. However, aframework does not relieve the
developer of the responsibility to design a good solution and to put the pieces together in the best
way possible to meet the user's needs.

Classes and subclasses

In Visual FoxPro, asin any object-oriented programming language, the fundamental building
block isthe class. The beauty of classes, of course, isthat their essentia functiondity is
encapsulated in a base class whose behavior can be modified or extended in subclasses.

Visual FoxPro ships with several base classes that can be used “asis’ to add functionality to an
application. Some of these are visual classes, such as the Form class and the classes for controls
used on aform. Visua classes have a visual representation in an application at runtime. Other
VFP base classes, such as the Collection class and the Session Object class, are non-visual classes.
Non-visual classes do not have a visual representation at runtime.

In addition to being considered visual or non-visual, the VFP base classes are also classified as
either container classes or control classes. Container classes create objects that can contain other
objects. For this reason, container classes have an AddObject method control classes lack.

With the exception of the Column, Header, and Empty classes, all of the Visua FoxPro base
classes can be subclassed. While it is certainly possible to create application objects directly from
the VFP base classes, the best practice is to create subclasses of the VFP base classes and use
those subclasses as the base classes from which any further subclasses are derived. Sample code
for doing thisis shown later, in the section called "Building your own framework."

A framework typically includes a set of framework-level base classes aong with severa
subclasses, each of which deliversincreasingly specific functionality as you move down the class
hierarchy. For example, at the framework base class level there might be class library containing
subclasses of al of the Visual FoxPro controls, derived directly from the Visual FoxPro base

© 2007 Rick Borup Page 5 of 38

Framework Fundamentals

classes. Some of these framework-level base class controls might in turn have subclasses of their
own in order to implement some specific functionality, such as aread-only text box or alabd that
serves as a hyperlink. A commercia framework typically supplies awide variety of classes for al
sorts of objects the developer can use to create a fully functiona application.

Visual class libraries

In Visual FoxPro, class definitions can be stored either in avisual class library (.vex file) orina
program (.prg file). Each has its advantages and disadvantages, and which you use often comes
down to a matter of persona preference. Most likely you will use both, at different times and for
different types of classes.

Classlibraries are created with the CREATE CLASSLIB command. The CREATE CLASSLIB
command takes only one argument, which is the name of the class library to be created. If the
name specified does not have a file name extension, Visual FoxPro uses the default .vex. For
example, the following statement creates a visual class library named myClasdib.vex in the current
directory.

CREATE CLASSLIB nmyd asslib

Class definitionsin avisua class library can be created with the CREATE CLASS command. The
syntax of the CREATE CLASS command provides for the name of the class being created, the
classlibrary in which the classisto be stored, the class from which the new class is derived (the
parent class), and, if the parent classis not a VFP base class, the class library in which the parent
class definition is stored. For example, the following command creates a new class named
myTextbox whose parent class in the VFP textbox base class, and storesit in avisual class library
named myClasdib.vcx.

CREATE CLASS nyText box of myd asslib as textbox

Like the CREATE CLASSLIB command, the CREATE CLASS command can be run from a
program or from the command window. Either way, the CREATE CLASS command opens the
Class Designer window, which you can use to modify the properties and methods of the newly
created class.

= Class Designer - myclasslib.vex (mytextbox) E]@
.mvtextl':-ux | e
' miytesthox !

W
£ >

Figure 1: The Class Designer window is used in conjunction with the Properties sheet to modify the
properties and methods of a class.

© 2007 Rick Borup Page 6 of 38

Framework Fundamentals

Y ou can also create a new class from the Class Browser by clicking the New Class button on the
toolbar, or by issuing the CREATE CLASS command with no arguments. In both cases, VFP
displays the New Class dialog in which you can specify the class name, class library, parent class,
and (if necessary) the parent classlibrary.

= Mew Class

Clazz Mame: | muTextBox

Based Or: TextBox 7 E]

Fram:

Stare In: o hawbon200 7N fp3appshtestimyclazslib E]

Figure 2: The New Class dialog enables you to create a new class by specifying its name, classlibrary, parent
class, and parent classlibrary.

One possible source of confusion when dealing with visual class libraries arises from what some
might consider an ambiguity in the use of the word visual. In the term visual classlibrary, the
word visual can be thought of as referring more to the nature of the class library than to the
nature of the classes stored within. While visual class libraries can only store classes that can be
modified visually, some non-visua classes can be modified visually and can therefore be stored in
avisual classlibrary. The Collection class is one example. The following code works just fine,
even though the Collection classisa"non-visua" classin that it does not have a visual
representation at runtime.

CREATE CLASS myCol I ection OF nyCl asslib as Collection

Not all Visual FoxPro classes can be modified visualy. Two that cannot are the Exception class
and the Session class. Because they cannot be modified visually, subclasses derived from either of
these two classes cannot be stored in avisua classlibrary.

A typicd visual class library contains many individual class definitions. While they are a
convenient way to organize classes, visual class libraries do have some disadvantages. For one
thing, avisua class library is atwo physica files on disk, a.vcx and a corresponding .vct. For
another, when you use a class from avisual classlibrary in a project, the entire class library is
included in your project (and hence in your compiled application) even if you use only one class
from that library. With large class libraries, this could be a consideration if the size of the
compiled EXE is of concern.

PRG-based classes

Class definitions can aso be stored in program (.prg) files. Thisis accomplished with the DEFINE
CLASS command. A single program file can contain several class definitions, or it may contain
only one. A program file containing one or more classes definitions can be referred to as a class
library, although that term is generally used as shorthand for a visual class library. Classes defined
with a DEFINE CLASS statement in a program file are referred to as prg-based, or prog-based,
classes.

© 2007 Rick Borup Page 7 of 38

Framework Fundamentals

The DEFINE CLASS statement can be used to subclass any Visua FoxPro base class that VFP
alows to be subclassed. Thisincludes the VFP base classes that cannot be modified visually.
While prg-based classes may typically be used for subclassing non-visual classes, you can use
DEFINE CLASS to subclass any type of class. The choice depends largely on whether you prefer
to work with the subclass programmatically rather than visualy. For example, the application
object used in the sample framework for this session is a prg-based class derived from the VFP
Custom base class. Because it isanon-visua class, | prefer to work it in the VFP editor instead of
inthe class designer.

DEFINE CLASS statement is quite a powerful command. It enables you not only to create a
class, but also to specify class properties and methods, among other things. This includes the
ability to modify properties and methods of the parent class as well asto add new properties and
methods that are unique to the subclass.

The codein Listing 1 illustrates how DEFINE CLASS works. It creates a subclass of the VFP
textbox base class, modifying the values of some of the textbox's native properties and methods.
Specifically, it sets the BackColor to pae ydlow, the width to 150, the height to 21, and adds a
new property named iseditable with an initia value of True. Findly, it overrides the When event
base class code to return the value of the iseditable property.

Listing 1: The DEFINE CLASS command creates a class definition including properties and methods.

DEFI NE CLASS nyText Box as Text box
* Base class properties

BackCol or = 12648447 && pale yellow
Wdth = 150

Height = 21

* Custom property

iseditable = . T.

* \Wen() event nethod code
FUNCTI ON When() as Logi cal

RETURN this.iseditable

ENDFUNC

ENDDEFI NE && myText Box

Did you know you can use Class Browser with prg-based classes as well as visual class
libraries? In fact, the Class Browser works with visual class libraries (.vcx), forms
— (.scx), program files (.prg), and even project files (.pjx). If a single program file
contains more than one class definition, the Class Browser shows all of them in the tree view just
as it does when displaying a visual class library. If you right-click on a prg-based class in the
Class Browser and choose Modify from the popup menu, VFP opens the .prg file in the code
editor.

What belongs in main.prg

Every Visual FoxPro project must have amain file. The main file defines the starting point for the
application, in other words the code that runs first. The main file can be either a program or a
form, but it is customary and generally more useful to use a program (a.prg file).

The main fileis set in the Project Manager by right-clicking on it and choosing "Set as main” from
the popup menu. After the main file has been set, its name is shown in bold in the Project
Manager tree view. A project can have only one main file.

© 2007 Rick Borup Page 8 of 38

Framework Fundamentals

What you put in the main program file depends on what you want it to do and to some extent on
what kind of app it is. Most frameworks implement an application object to serve as the highest
level object in the application's object hierarchy at runtime. In this case, about the only thing the
main program has to do is to instantiate the application object and tell the application to run. The
concept of an application object is covered a bit later. For starters, it's easier to illustrate the basic
concepts of amain program with examples for an app that does not use an application object.

If your app begins (as many do) by showing aform in the main Visual FoxPro screen, then about
the smplest main program you can have is the one shown in Listing 2.

Listing 2. A simple main program

DO FORM myFor m NAME of r mvFor m
READ EVENTS
RETURN

The READ EVENTS command tells VFP to start event processing, in other words to begin
responding to eventsinitiated by the user. One of the most common mistakes made by beginning
VFP programmers is forgetting to issue READ EVENTS. If you don't include it, your form
flashes briefly on the screen and the application terminates immediately.

If your app runs as a top-level form (using Form.ShowWindow = 2) and you don't want the
Visual FoxPro screen to be visible behind it, you can add aline of code at the top of the main
program to make the main VFP screen invisible, as shown in Listing 3.

Listing 3. A simple main program for an application with a top-level form

_SCREEN. VI SI BLE = . F.

DO FORM myFor m NAME of rmWForm && A top-level form
READ EVENTS

RETURN

Thisworks, but hiding the main VFP screen in this manner is not an optimal solution because the
screen may visbly flash on and off before your form appears. A better way to hide the main VFP
screen isto create an application-specific configuration file (config.fpw) and use SCREEN=OFF.

At shutdown time, a VFP application must issue a CLEAR EVENTS to terminate the processing
started by READ EVENTS. When CLEAR EVENTS is executed, the event loop is terminated
and processing continues with the statement after READ EVENTS. In general, the statement(s)
following READ EVENTS should run whatever code is necessary to clean up and shut down the
application gracefully.

@ You may have noticed in Listings 2 and 3 that the next statement after READ EVENTS
is RETURN. The use of an explicit RETURN is optional, but I recommend including it as
the last statement in the main program. Some examples (and even some real-life
applications) use the QUIT statement at the end of the main program. The
disadvantage of using QUIT comes into play if you run the application from within the Visual
FoxPro IDE, which for many developers is common practice during the coding and testing cycle.
If the application's main program ends with a QUIT statement, Visual FoxPro itself terminates
when the application terminates, which is usually not the desired behavior during development.
Using a RETURN statement instead of QUIT avoids this problem. In the development
environment, RETURN returns control to the VFP IDE. In the runtime environment, there is no
higher level program in the call stack to return to, so RETURN does the same thing as QUIT.

—

© 2007 Rick Borup Page 9 of 38

Framework Fundamentals

In an application with only one form, the app should most likely terminate when the form is
closed. A logical place for CLEAR EVENTS in this caseisin the form's Unload method, which is
the last method to run before the form is released. When the user closes the form, the Unload
event fires and the CLEAR EVENTS command runs. This returns control to the main program,
which does whatever cleanup code may be necessary and then terminates.

In areal application you are most likely going to have more than one way to terminate the
application. For example, there might be an Exit item on the File menu as well asaway to
terminate the app from aform or toolbar. It's aso possible your application could be told to
terminate by events outside of the application itself, for example if the user shuts down Windows
while the app is still running.

Y ou can use an ON SHUTDOWN command to ensure that the CLEAR EVENTS command
aways gets executed when the app is told to terminate. The ON SHUTDOWN command defines
the code to be run when the application is told to shut down. The ON SHUTDOWN command
code can be stored in a procedure, a method, or even a separate program file. Because it is
invoked whenever the application istold to shut down, the ON SHUTDOWN command code is
the logical placeto put the CLEAR EVENTS statement. It also provides a place where you can
check for and handle conditions that would prevent gracefully shutting down the app, such as
open forms, processes still pending completion, or uncommitted database updates.

The ON SHUTDOWN code can be as simple as that shown in Listing 4.

Listing 4. A generic shutdown method

ON SHUTDOWN && Rel ease the current ON SHUTDOMAN conmand (this program.
CLEAR EVENTS && Stops the processing started with READ EVENTS.

The commentsin Listing 4 indicate the purpose of each of the two lines. The reason you need an
ON SHUTDOWN with no command after it in your ON SHUTDOWN method is that if you
don’t, you'll be unable to terminate the application because it's effectively in an infinite loop, re-
entering the ON SHUTDOWN code every time you tell it to quit.

If you use an ON SHUTDOWN program like the one shown in Listing 4, you can call it from any
place in your application where you want to terminate the application. Thusin the example of an
application with only one form, the form's Unload method could contain DO myShutdown.prg
instead of CLEAR EVENTS.

As asafety net, you can put agloba ON SHUTDOWN command in the main program to trap all
requests to terminate the app and ensure the ON SHUTDOWN program is run regardless of
where the termination request originates. Listing 5 shows a modified main program to implement
thisidea

Listing 5. A simple main program with a global ON SHUTDOWN command

ON SHUTDOAN DO myShut down. prg
DO FORM myFor m NAME of r miyFor m
READ EVENTS

RETURN

Using ON SHUTDOWN code aso avoids the "Cannot Quit Visual FoxPro" condition that arises
if Visual FoxPro istold to shut down, for example by closing the main VFP screen, while an event

© 2007 Rick Borup Page 10 of 38

Framework Fundamentals

loop is till in effect. If this condition occurs during devel opment the developer can handle it by
canceling the program, but in the runtime environment the end user has no way to terminate the
app short of killing the process from the task manager.

-

.
=~ Wisual FoxPro

! E Cannat Quit Wisual FoxPro

Figure 3: The" Cannot Quit Visual FoxPro" condition occursif you try to shut down VFP while an event
loop is still active.

In area application, you are most likely going to want to do alot of other things before opening
the first form. For example, you may want to set up the runtime environment by issuing the
appropriate SET statements. In a ssimple app with no application object, the main program is a
good place to put these commands. Similarly, you might want to clean up the runtime
environment by issuing a CLOSE ALL and related commands prior to terminating the app. The
code in Ligting 6 illustrates a dightly more complete main program that implements these ideas.

Listing 6. A somewhat more complete main program

SET TALK OFF

SET EXCLUSI VE ON

SET DELETED ON

ON SHUTDOAN DO myShut down. prg
DO FORM myFor m NAME of r mvFor m
READ EVENTS

CLCSE ALL

RETURN

Other tasks commonly performed by the main program but not shown in Listing 6 include
showing a splash screen, opening the database, setting the path, setting up a global error handler,
putting up the application's main menu, setting the screen icon, caption, and background (if any),
launching the security process for user login (if any), and so on.

If you decide to use an application object, much of the code that might otherwise be in the main
program usually gets placed in amethod or methods of the application object or one of its
subordinate objects. When this is the case, you still need a main program as the application's
starting point, but it need do nothing more than instantiate the application object and call
whatever method is used to start up the app. The start-up code is often placed either in the
application object's Show method or in a custom method named Run, Start, or whatever else you
want to call it. A sample main program for an application that uses an application object is shown
inListing 7.

Listing 7. A sample main program for an app that uses an application object

PUBLI C 0App

0App = NEWOBJECT("nyAppd ass", "nyAppd ass.prg")
0App. Run()

© 2007 Rick Borup Page 11 of 38

Framework Fundamentals

RETURN

When an application object is used, the ON SHUTDOWN code is usually placed in a method of
the application object and the ON SHUTDOWN command is something like this:

ON SHUTDOMN oApp. Shut down()

The VFP application wizard

No discussion of framework fundamentals for Visual FoxPro would be complete without some
mention of VFP's own built-in framework. While you might not necessarily build a production
application with this framework, it's nevertheless ingtructional to know it's there and to learn how
it works.

The Visua FoxPro built-in framework is a combination of two tools, the Application Wizard and
the Application Builder. The Application Wizard generates a generic, skeleton project from the
framework's classes and other resources. The Application Builder can then be used to add
application-specific elements to the generic project to create a useful application.

The Application Wizard is launched from the main menu by choosing Tools | Wizards |
Application. The Wizard prompts you for a project name, as shown in Figure 4, and creates a
project file of that name in the specified location.

-

-+ Application Wizard

Select a file name and location for your new application:
Project name:
my iZApp

Praoject file:
o hawfow2 00w fp3appshmizapphmywizapp. pis

Create project directony structure

Figure 4: The Application Wizard promptsyou for a project name and location.

If you mark the 'Create project directory structure' check box, the Wizard creates a standard set
of subdirectories such as Data, Forms, Help, Include, and so on, and places the generated files
into the appropriate subdirectory. If you do not mark this check box, all the generated files are
placed in the project's root directory.

It takes several seconds for the Application Wizard to run to completion. When it finishes, it
launches the Application Builder, shown in Figure 5. The Application Builder is atool designed to
help you add data, forms, and reports to the application.

© 2007 Rick Borup Page 12 of 38

Framework Fundamentals

-

v Application Builder: c:\swfox2007\vfp9apps\wizapp\my... E]

EGE”ETHH Creditz || Data || Forms || Reports || Advanced

Application Tepe

Mame: | myWwizdpp & Normal
Image: D © Module
() Top-Level
Comman Dialogs Ietaly}
Splazh screen Cluick. start [:]

About dialog [] User logins

o] (o

Figure5: The Application Builder isatool for setting project attributes and adding new elements such as
data, forms, and reports.

Y ou do not need to run the Application Builder at this point. If you close it and stop here, you
can add new or existing databases, forms, reports, and other resources to the project viathe
Project Manager in the conventional manner. If you want to run the Application Builder later on,
you can launch it from the VFP main menu via Tools | Wizards | All Wizards | Application
Builder.

The project generated by the Application Wizard is a skeleton application comprising amain
program, an application class library, a couple of menus, a configuration file, several header
(#include) files, and other components. The Wizard also brings in references to severa of the
Visua FoxPro foundation classes, which are located in the ffc subdirectory under the VFP home
directory.

Where applicable, the Application Wizard incorporates the name of the application into the names
of the filesit generates. For example, if you create an application named myWizApp, as shown in
Figure 5, then the main program becomes myWizApp_app.prg, the application classlibrary is
caled myWizApp_app.vex, and so on.

The main program generated by the VFP application wizard is considerably different from the
simple examples shown in Listings 2, 3, and 6. The downloads for this session include the
generated code for an Application Wizard app named myWizApp. The main program, named
myWizApp_app.prg, can be found in the myWizApp\Progs\ directory.

Although the Visua FoxPro documentation refers to the skeleton application generated by the
Application Wizard as a framework, in my view that is not realy the framework. The framework
is the underlying classes and other resources from which the skeleton application is derived. In
that sense, the skeleton app is more an instance of the framework than the framework itself.

© 2007 Rick Borup Page 13 of 38

Framework Fundamentals

Although it does nothing useful out of the box, you can compile the skeleton application into a
executable and run it (see Figure 6). In actual practice you would of course need to add the data,
forms, reports, and so on that are required to make a useful application. The purpose of the
skeleton app generated by the Application Wizard, like that generated by any framework, isto
give you a starting point.

- myWizApp

File Edit Tools Program Favorites Window Help
0 =

el W -\A’\'-uu,‘_ k.ﬂ’“‘\wf - -~ ’l\ruﬂb -»\.q.“_

Figure 6: The skeleton application generated by the VFP Application Wizard can be compiled into an
executable and run, although it does nothing useful until you add actual data, forms, and reports.

If you want to learn more about the Visual FoxPro Application Wizard, not only can you generate
and experiment with an app of your own but you can a so explore the source code for the
Application Wizard itself. The source code is included in XSource.zip, which is distributed with
VFP and can be found in the Tools\X Source subdirectory under the VFP home directory.

To be sure you have the latest version of the XSource files, download X Source.zip for Visua
FoxPro 9.0 SP1 from Microsoft using the link to "X Source for Visual FoxPro 9.0 SP1" on the
VFP Product Updates page at http://msdn2.microsoft.com/en-us/vfoxpro/bb190232.aspx. This
release of the XSource files, which was not included in the VFP 9.0 SP1 download, also comes
with an updated license permitting not only usage and modification but also distribution of the
source code. See the January 2006 L etter from the Editor at http://msdn2.microsoft.com/en-
us/vfoxpro/bb190239.aspx for more information on the new "permissive’ license for this code.

Extract the contents of X Source.zip into Tools\X Source, retaining the folder names associated
with each individual file within the zip file. After you do this, the XSource source code files are
grouped into subdirectories under ToolS\X Source\V FPSource. The project file for the Application
Wizard isin Tools\X Source\V FPSource\Wizards\wzapp. Open the wzapp project file to explore
the source code for the Application Wizard.

Building your own framework

When you first set out to create your own framework, don't try to do too much. Y our goal is not
to create something with all the features of a commercia framework. Your goal isto learn by

© 2007 Rick Borup Page 14 of 38

Framework Fundamentals

doing, and you can learn alot by creating a simple framework that implements some of the basic
concepts.

Chances are you'll never develop anything close to what a fully featured commercial framework
does. Why would you want to, when there are some excellent commercial frameworks available at
reasonable prices? But until you understand basic framework concepts, you cannot really
understand or appreciate everything a commercia framework does for you.

The rest of this session is devoted to helping you learn basic framework concepts by developing a
sample yet fully functional framework and seeing how it's used to create a working application.
The sample framework for this session is called "My Framework”. To help identify them, all of the
framework's classes, class libraries, and program files begin with the prefix my, and I'll refer to the
framework itself as myFramework. All of the code for myFramework and for the sample
application are included in the session downloads.

Creating the framework base classes

Thefirst step isto create avisud class library (vex) containing a set of subclasses derived directly
from the Visua FoxPro base classes. Because these first-level subclasses are direct descendents of
the VFP base classes, they are sometimes referred to as "one-off" classes, meaning they're one
level removed from the base classes.

Although you can do it by hand, it's easy to write a program to create a class library and populate
it with subclasses derived directly from the VFP base classes. A sample program for this purpose
isshown in Listing 8. The code creates a class library named myBaseCtrl.vex for the base
controls, and another class library named myBaseForm.vex for the base form and base toolbar
classes. The class libraries are created in a sub-directory called Classes underneath wherever the
program fileitsdlf islocated.

It's not necessary to separate controls and forms into separate class libraries, but some type of
organization is helpful. You can certainly choose a different arrangement if you prefer. Note that
not al the VFP base controls are subclassed in this example. The code in Listing 8 isincluded in
the session downloads in the myFramework directory.

" 4 When you open the session download code in Visual FoxPro on your own machine, the
indented lines will be aligned as intended if you set the Tab size to 3 (under Tools |
w— Options | IDE).

Listing 8: This program creates class libraries containing one-off subclasses derived directly from the Visual
FoxPro base classes.

* Program CREATEBASECLASSES. PRG

* Aut hor: Ri ck Borup

* Date Witten: 09/05/2007

* Copyright: (c) 2007 Information Technol ogy Associ ates

* Al rights reserved.

* Conpil er: Vi sual FoxPro 09.00. 0000. 3504 for W ndows

* Abstract: Create framework-1|evel base classes from VFP base cl asses.

© 2007 Rick Borup Page 15 of 38

Framework Fundamentals

* Environnment in:
* Envi ronnment out:
* Paraneters:

* Returns:

* Changes

e

* Framewor k base controls

#DEFI NE _BaselLi brary ".\C asses\ nyBaseCtrl . vcx"

CREATE CLASSLI B _Baseli brary

CREATE CLASS chkBase _BaseLi brary as CheckBox NOMI T
CREATE CLASS choBase _BaseLi brary as ConboBox NOMI T
CREATE CLASS cndBase _BaseLi brary as ConmandButton NOMI T
CREATE CLASS cngBase _BaseLi brary as ConmandG oup NOMI T
CREATE CLASS cnt Base _BaseLi brary as Contai ner NOMI T
CREATE CLASS ctl Base _BaseLibrary as Control NOMIT
CREATE CLASS edt Base _BaseLi brary as EditBox NOMIT
CREATE CLASS grdBase _BaseLibrary as Gid NOMI T

CREATE CLASS i ngBase _BaseLi brary as |1 mage NOMI T
CREATE CLASS | bl Base _BaseLi brary as Label NOMIT
CREATE CLASS |inBase _BaseLibrary as Line NOMIT

CREATE CLASS | st Base _BaseLibrary as ListBox NOMIT
CREATE CLASS opgBase _BaseLibrary as Opti onG oup NOMI T
CREATE CLASS opt Base _BaseLibrary as OptionButton NOMIT
CREATE CLASS pgf Base _BaseLi brary as PageFrane NOMI T
CREATE CLASS sepBase _BaseLi brary as Separator NOMIT
CREATE CLASS shpBase _BaseLi brary as Shape NOMI T
CREATE CLASS spnBase _BaseLi brary as Spi nner NOMI T
CREATE CLASS t xt Base _BaseLi brary as Text Box NOMI T
CREATE CLASS t nr Base _BaseLibrary as Tiner NOMIT

FRAAFRARARFARARIRARRARIRRR

* Framewor k base form and t ool bar

#UNDEF _Baseli brary

#DEFI NE _BaselLi brary ".\C asses\ nyBaseFor m vcx"

CREATE CLASSLI B _Baseli brary

CREATE CLASS frnBase OF _Baselibrary as Form NOMI T
CREATE CLASS tbrBase OF _Baselibrary as Tool Bar NOMI T

Each of the CREATE CLASS statements opens a class designer window. The NOWAIT
statement tells VFP to continue with the next line of code without waiting for the class designer
window to be closed. Therefore when this program finishes running, there will be several class
designer windows open in the VFP IDE. Because you do not need to make any changes to these
base classes at this point, just close each of the class designer windows. (Tip: Using Ctrl+W to
close alot of cascaded windows is much faster than using the mouse.)

Creating the framework subclasses

The next step in constructing the framework's class structure isto create some useful subclasses
from the framework base classes. In order to keep things smple, only a few subclasses are
presented here. They are meant to be representative of what in area framework would be awide
variety of classes designed for all sorts of uses within an application.

The subclasses in this example are dl stored in the same class libraries as the framework base
classes from which they're derived. In area framework, with dozens or perhaps even hundreds of
classes, it would certainly be acceptable if not preferable design to create a separate class library
or libraries for the framework subclasses.

© 2007 Rick Borup Page 16 of 38

Framework Fundamentals

The subclasses created for the sample framework are as follows:
an "OK" command button with its caption set to OK and its Default property set to True;

a"Cancel" command button with its caption set to Cancel and its Cancel property set to
True;

adisplay-only text box with its back color set to cyan and its When method set to always
return False

aframework-aware base form with code in its Destroy method to communicate with the
framework's form manager object and code in its Show method to restore its size if the
form is minimized when launched;

a subclass of the framework-aware base class with an OK button; and
asubclass of the framework-aware base class with OK and Cancel buttons.

The codein Listing 9 isintended for demonstration purposes only. In actua practice you would
most likely create these subclasses manually viathe Class Designer instead of using code. The
purpose of including this code here isto illustrate the properties and methods that are changed in
the subclasses. The code in Listing 9 isincluded in the session downloads.

Listing 9: This program creates some useful subclasses of the framewor k base classes.

* Program CREATESUBCLASSES. PRG

* Aut hor: Ri ck Borup

* Date Witten: 09/05/2007

* Copyright: (c) 2007 Information Technol ogy Associ ates
* Al rights reserved.

* Conpil er: Vi sual FoxPro 09.00. 0000. 3504 for W ndows
* Abstract: Create framework-I|evel subcl asses.

* Environnent in:

* Envi ronnent out:

* Paraneters:

* Returns:

* Changes

#DEFI NE _BaselLi brary ".\C asses\ nyBaseCtrl.vcx"

* "CK" conmand button
CREATE CLASS cndBaseOK OF _Baseli brary as cndBase FROM _Baseli brary NOMI T
TEXT TO | cMet hodCode NOSHOW

* Met hod: cndOK. d i ck()
t hi sf orm Rel ease()
ENDTEXT

_cliptext = |cMethodCode

MODI FY CLASS cndBaseOK OF _Baseli brary METHOD dick
*xx Past e net hod code

x Set Caption to \ <K

*xx Set Default to .T.

* "Cancel " conmand button

CREATE CLASS cndBaseCancel OF _Baselibrary as cndBase FROM _BaselLi brary NOMI T
TEXT TO | cMet hodCode NOSHOW

* Met hod: cndCancel . i ck()

© 2007 Rick Borup Page 17 of 38

Framework Fundamentals

t hi sf orm Rel ease()

ENDTEXT

_cliptext = |cMethodCode

MODI FY CLASS cndBaseCancel OF _Baselibrary METHOD dick
*xx Past e net hod code

x Set Caption to \<Cancel

*xx Set Cancel to .T.

* Di spl ay-only textbox

CREATE CLASS t xt BaseDi spl ayOnly OF _Baseli brary as txtBase FROM _Baseli brary
NOWAI T

TEXT TO | cMet hodCode NOSHOW

* Met hod: t xt BaseDi spl ayOnl y. When()

RETURN . F.

ENDTEXT

_cliptext = |cMethodCode

MODI FY CLASS t xt BaseDi spl ayOnly OF _Baseli brary METHOD Wen

*xx Past e net hod code

i Set BackCol or to 128, 255, 255 (cyan)

DO (_Browser) WTH (_Baseli brary)

#UNDEF _Baseli brary
#DEFI NE _BaselLi brary ".\C asses\ nyBaseForm vcx"

* A framewor k- aware base form
CREATE CLASS frnBaseAppAware OF _Baselibrary as frnBase FROM _Baseli brary
NOWAI T
TEXT TO | cMet hodCode NOSHOW
* Met hod: frnBaseAppAwar e. Destroy()
| F TYPE("oApp.oFornmvgr") = "O' AND ! SNULL(0oApp. oFor mvgr)
| F PEMSTATUS(oApp. oFor mvr, "Rel easeForni, 5) = .T. AND ;
PEMSTATUS(oApp. oFor m\vgr, "Rel easeFornf, 3) = "Met hod"
0App. oFor mvgr . Rel easeFor n(t hi sf or m nane)
ENDI F
ENDI F
ENDTEXT
_cliptext = |cMethodCode
MODI FY CLASS frnBaseAppAware OF _Baseli brary METHOD Destroy
*xx Past e net hod code

TEXT TO | cMet hodCode NOSHOW

* Method: frnmBaseAppAware. Show)
LPARAMETERS nStyl e

W TH t hi sform

IF .WndowState = 1 & If formis mnimzed,
.WndowState = 0 &% set it to nornal.
ENDI F
ENDW TH
ENDTEXT

_cliptext = |cMethodCode
MODI FY CLASS frnBaseAppAware OF _Baseli brary METHOD Show
*xx Past e net hod code

* A framewor k- aware subclass formwi th an OK button

CREATE CLASS frnBaseOK OF _Baselibrary as frnBaseAppAware FROM
_BaseLi brary NOMI T

x Add K button from nyBaseCirl. vcx

© 2007 Rick Borup Page 18 of 38

Framework Fundamentals

* A framewor k-aware subclass formwi th OK and Cancel buttons

CREATE CLASS frnBaseOKCancel OF _Baselibrary as frnBaseAppAware FROM
_BaseLi brary NOMI T

i Add K and Cancel buttons from nyBaseCtirl.vcx

* Vi ew cl asses in class browser
DO (_Browser) WTH (_Baseli brary)

RETURN

Now that the framework-level classes and sub-classes for forms and controls have been created,
we can turn our attention to the non-visual classes for the application object, the forms manager,
the menu manager, and the reports manager.

Creating the application object class

When an application isfirst launched, severa startup tasks typicaly have to be done before the
user can begin interacting with the application. For example, the runtime environment needs to be
set up, a splash screen might be displayed, a database may need to be opened, the main menu
needs to be put up, and an initial form may need to be opened. Remembering the section about
what belongs in the main program, you know that these things can be done in main.prg or they
can be assigned to the application object or one of its delegates. In order to stick with an object-
oriented design as much as possible, the sample framework for this session uses the second
approach of assigning the application initialization tasks in the application object. As shown in
Listing 10, the main program for the sample framework does nothing more than instantiate the
application object.

Listing 10: The main program for the sample framework does nothing mor e than instantiate the application
object and call its Run method.

PUBLI C oApp

0App = NEWDBJECT("nyAppd s", "myAppd s.prg")
0App. Run()

RETURN

Asyou can tell from the main program, the application object for myFramework is a prg-based
class called myAppCls defined in a program file named myAppCls.prg. After instantiating the
application object, the main program calls its Run method. The Run method, which is shown in

Listing 11, isresponsible for doing all of the tasks necessary to initialize the application and for
starting the event loop by issuing READ EVENTS.

Listing 11: The application object's Run method isresponsible for initializing the application and for
starting the event loop.

PROCEDURE Run() as VA D

ON SHUTDOMN oApp. Shut down() && Use "oApp. Shutdown()", not "this. Shutdown()".

this.InitializeApp()

ON ERROR oApp. oError Handl er. Handl eError (ERROR(), PROGRAM), LINENQ(),
MESSAGE(), .T.)

_SCREEN. Visible = . T.

READ EVENTS

ENDPRCC && Run

In order to keep the size of the Run method to a minimum, most of the detail tasks required to
initidize the application are delegated to the InitializeApp method. As you can see from Listing

© 2007 Rick Borup Page 19 of 38

Framework Fundamentals

11, the Run method sets up the ON SHUTDOWN code, established an error handler viathe ON
ERROR command, makes the screen visible, and issued READ EVENTS.

At runtime, shutdown requests and errors typicaly occur in code running outside of the
application object, for example in forms, controls, or methods of other objects. Therefore the ON
SHUTDOWN and ON ERROR commands issued by the application object must be functiona
regardless of where they are invoked. That's why, in those two commands, the Run method refers
to the application object by name (0App) instead of using "this'. At runtime, "this" does not
aways refer to the application object, but oApp aways does.

The primary responsibility of the Shutdown method isto issue CLEAR EVENTS to terminate the
event loop. The Shutdown method in myFramework is also set up to ask the user if they want to
terminate the application, if the value of the application object's IPromptOnEXit property is True.
The idea hereis that the user would have away, perhaps via a check box in an Options dialog, to
set the value of IPromptOnEXit True or False according to their personal preference. The
Shutdown method code is shown in Listing 12.

Listing 12: The application object's Shutdown method isresponsible for terminating the event loop by
issuing CLEAR EVENTS.

PROCEDURE Shut down() as VA D
IF THS. | Prompt OnExit = . T.

| F MESSAGEBOX("Do you want to quit now?", ;

MB_YESNO + MB_| CONQUESTI ON, "Exit Application") <> |IDYES
RETURN

ENDI F
ENDI F
ON SHUTDOMN && C ear ON SHUTDOWN command to avoid infinite | oop
this. d eanUp()
CLEAR EVENTS
ENDPRCC && Shut down

Asyou can see, the Shutdown method in myFramework calls a method named CleanUp, which as
its name impliesis responsible for cleaning up the application environment before shutting down.
If the application is running in development mode—that is, if the developer is running it in the
VFP IDE during testing and debugging—the CleanUp method calls a method named DevEQJ
which does a few additional things to restore the developer's environment before shutting down
the app. Y ou can see the CleanUp, DevEQOJ, and al the other mthods of the sample application
object in the session downloads. In actua practice, there are probably going to be more things
you want to do in CleanUp and DevEQOJ than are shown in the sample code.

The framework-level application class code also contains severa abstract methods designed to be
implemented in the application subclass. These include the CreateA ppObjects method that
instantiates the framework manager classes for forms, menus, and reports. This code needs to be
implemented in the application subclass because these objects are instantiated from application-
level subclasses whose names are set up at runtime.

The code for myAppCls.prg istoo long to reproduce here, but isincluded in its entirety in the
session downloads so you can inspect it and learn how it operates.

© 2007 Rick Borup Page 20 of 38

Framework Fundamentals

Constructing a forms manager class

The primary purpose of aforms manager classisto facilitate the instantiation, display, and release
of form objects. A forms manager may also be used to coordinate these events with other objects
in the framework that need to aware that aform has been instantiated, released, or has changed
state.

In Visua FoxPro, forms can be defined as form files (.scx) or as classesin avisud class library
(.vex). Forms defined in form files are instantiated with the DO FORM command, while forms
defined in aclass library are ingantiated with CREATEOBJECT or NEWOBJECT. A forms
manager can encapsulate both behaviors and expose them to the application through asingle
interface such as a DoForm method.

The forms manager class for the sample framework used in this session does just that. The code is
too long to reproduce in the body of this paper, but the entire forms manager classisincluded in
the session downloads as myFormMgr.prg.

The forms manager uses aforms collection to keep track of which formsarein use a any given
time. Each entry in the forms collection holds information about one particular form. When the
form manager's DoForm method is called, it checks to see if the form is already running. If not,
the forms manager instantiates the form and adds it to the forms collection by cdling the
AddToFormsCollection method. If the form is aready running, the form manager calls the form
object's Show method. In this framework, only one instance of agiven form is alowed to run at
the same time.

In the sample framework for this session, the forms collection is stored in an array property of the
forms manager class.? Each row of the array holds five pieces of information about the form: the
form's name, its object name, whether it is .scx based or .vex based, how many parameters are
accommodated in its Init method, and the menu bar name associated with the form on the
Window pad of the application's main menu.

In this sample framework, forms that interact with the forms manager need to be registered with
the application by the developer. An embedded table named FormL.ist.dbf is used for this purpose.
Asshownin Table 1, the FormList table has columns for each of the five elements of information
in the forms collection.

Table 1: The FormList.DBF table storesinformation about registered formsin the application.

Field Name | Type | Size | Description

cFormName | C 50 Name of the form (e.g., frmCustomers)

cObjName C 50 Object name of the form at runtime (e.g., ofrmCustomers)
cBarName C 20 Name to appear on the Window menu pad (e.g., Customers)
nNbrParms | N 2,0 | Number of parameters accommodated in the form's Init method
IClassForm L 1 True for .vcx-based forms, False for .scx-based forms

2 |f you are using VFP 8.0 or later, a collection object might be a better choice than an array. The forms manager
class used in the sample framework for this session is derived from aclass | created long before the collection class
was introduced in VFP 8.0.

© 2007 Rick Borup Page 21 of 38

Framework Fundamentals

The developer registers aform by adding arow with the appropriate values to the FormL.ist table.
Figure 7 shows the FormList table entry for a sample form named frmDummy. The form's object
name is ofrmDummy, its menu bar name is Dummy Form, it takes zero parameters, and it isnot a
class-based form.

r Formlist E] @ W
s

Chormname frmnD Ly
Cobhjname aofrmlurmmy
Charname Dummy Form
Mnbrparms 0
Lclazsform F

| 3 >

Figure7: The FormList table entry for a sample form named frmDummy.

The forms manager class also has a ReleaseForm method. The purpose of the ReleaseForm
method is to remove the form from the forms collection, which is done by a call to the form
manager's RemoveFromFormsCollection method.

Even if you place a command button prominently labeled "Close" on aform, users won't always
useit to close the form. A form can aso be closed in other ways, such as by clicking the standard
Windows Close button on the form's title bar. For this reason, you can't rely on codein a
command button or any other individual control to notify the forms manager object that the form
is being released. Instead, that responsibility belongs to the form itself. That's why the Destroy
event method of the framework-aware forms class used in this framework includes acall to the
form manager's Rel easeForm method, as shown earlier in Listing 9.

The forms manager aso handles other functions such as a method to check whether aformis
registered in the FormList table, a method to close al open forms (useful when the application is
being shut down), and methods to interact with the menu manager classin order to add the name
of aregistered form to the Window menu pad when the form is instantiated and remove it when
the form is released.

Constructing a menu manager class

Although Visua FoxPro became an object-oriented development tool when VFP 3.0 superseded
FoxPro 2.x, and athough VFP has continued to evolve in that direction ever since, menus remain
essentially unchanged and are still purely procedural. Over the years, developers have come up
with several approaches to improve on the native VFP Menu Designer in attempts to move menu
design in amore data-driven and object-oriented direction. One such current project is the VFPX
Menu Project, available for download from CodePlex at http://www.codeplex.com/VFPX.

© 2007 Rick Borup Page 22 of 38

Framework Fundamentals

Unless you choose to incorporate a replacement approach to menus in your framework, you're
stuck with the native VFP approach to designing menus and programmatically manipulating them
at runtime. Because menus are not classes, you can't subclass them to implement specific
behaviors. For the framework designer, this means supplying a basic menu and copying it (or
creating it from code) into the generated project for every application.

What sorts of things should a framework menu manager be expected to accomplish? One useful
function isto add the name of aform to the Window menu pad when the form is opened, and
remove it when the form is closed. In the sample framework for this session, this functionality is
implemented by a coordinated effort between the forms manager and the menu manager.

When the forms manager adds a form to its forms collection, it makes a call to the menu
manager's AddToWindowPad method. Using parameters, the forms manager passes the menu
manager the information necessary for the menu manager to set up a bar on the Window menu for
the newly opened form. Similarly, when the forms manager removes a form from its forms
collection, it makes a call to the menu manager's RemoveFromM enuPad method.

Another function the menu manager can handle is removing bars or pads from the main menu
under certain conditions. For example, | like to have a Developer menu pad available when I'm
testing and debugging compiled apps from with the Visua FoxPro IDE. The Developer menu
gives me access to tools such as the Debugger, the Class Browser, the Data Session window, and
the Command Window while the application is running. Of course, these tools aren't available to
the end user so the Developer pad should be removed if the app is not running in the VFP IDE.

Similarly, there may be individua bars on a menu pad that are available to some users but not all
users, perhaps depending on their access level. One example might be a menu item giving the user
the ability to add new users or edit other existing users passwords or permissions. In my opinion,
if auser does not have access to the functionality provided via a certain menu bar it's preferable to
remove that bar entirely rather than merely to disableit. A disabled menu bar still shows on the
menu pad and serves to let the unauthorized user know there is a function they can't get to,
whereas removing the bar hides the existence of that functionality from the unauthorized user.
The menu manager can provide a method to remove a bar from a menu pad based on its bar
name.

Although working with native VFP menu pads and bars is not as intuitive as it could be, the code
for the menu manager classisfairly straightforward. The menu manager class for the sample
framework isincluded in the session downloads as myMenuMagr.prg.

Constructing a reports manager class

The primary job of the reports manager classis to encapsulate the logic necessary to print and/or
preview areport. In the same way the forms manager provides a DoForm method to hide the
differences between instantiating a vcx-based from and an scx-based form from the rest of the
application, the reports manager in this sample framework provides a ShowReport method that
takes care of rendering a report in the manner specified by the user.

In the sample framework, the report manager's ShowReport method takes three parameters: the
name of the report, a flag indicating whether or not to prompt the user to print after preview, and
aflag indicating whether to run the report as a summary or not. In addition, the ShowReport

© 2007 Rick Borup Page 23 of 38

Framework Fundamentals

method checks the application object's | PrintPreview property to know whether or not to show
the report in the preview window or send it directly to the printer. Finally, and thisis adesign
decision you may or may want to use in your own apps, the ShowReport method always prompts
the user for the desired printer before printing.

The report manager class also includes a NoReport method to gracefully handle the situation
where there is nothing to report, for example if the cursor or table driving the report is empty. In
the sample framework thisis a simple message box telling the user there is nothing to report. In
the design of the sample framework, responsibility for calling the NoReport method instead of the
ShowReport method rests with the calling object.

The report manager class in the sample framework aso includes away to set an error messagein
a property of the class and return it to a calling object. Although not implemented in the sample
application, thisis an example of atechnique that's useful in any class that may or may not be
alowed to communicate via a user interface element such as a message box. For example, ina
Web application reports could be generated as PDF files instead of to the screen or printer, and
any errors would have to be handled by the calling method so it could notify the user viaa
response to their browser.

The reports manager class for the sample framework isincluded in the session downloads as
myRptMgr.prg.

How to tie it all together

An application class is commonly used as the highest level classin the framework hierarchy. At
runtime, the application object is the glue that ties the rest of the objects together into aworking
application. In addition to many other responsibilities, the application object creates instances of
the application-level subclasses derived from the framework-level base classes.

In order to preserve the class hierarchy with the application object at the top, references to al
objects created by the application object are held in properties of the application object rather than
being created at the top level. For example, the application object's oFormMgr property holds a
reference to the forms manager object and its oMenuMgr property holds a reference to the menu
manager object.

Because the application object is the first to be instantiated and the last to be released, the
references to the application-level delegate objects persist from the time the objects are
instantiated at application startup until the application rel eases them when it terminates. The
application object name (0App) is defined as public in the main program in order to keep it in
scope throughout the entire application. This means code anywhere in the application can call a
method on oApp or reference any of the framework-class instances such as oApp.oFormsMagr,
0App.oMenuMgr, and so on. Although the use of public variablesis generally discouraged, it's
customary to define the application object as public for this reason. In the sample framework,
0App isthe only public variable.

© 2007 Rick Borup Page 24 of 38

Framework Fundamentals

Creating the application class libraries

Once the framework base classes and subclasses have been created, they could theoreticaly be
used directly in an application. However, it's highly advisable to create another layer of
abstraction between the framework classes and the classes used by an application based on that
framework. Thisis done by subclassing the framework classes into application-level classlibraries.

Subclassing the framework base classes into application-specific class libraries alows the
developer to modify the appearance and behavior of the application-level classes for one
application separately from any modifications that might be made for another application. For
example, Application A might use a cyan background for the read-only text box, while
Application B might use a pale yellow background for the same control. This type of change, of
course, should be made at the application level rather than the framework level.

The application-level classes for all applications are subclassed from the framework classes, but
every application derived from the framework gets its own application-leve classlibraries. In
addition to ensuring that changes made to one application don't affect another one, this also
preserves the class hierarchy back to the framework base classes and ensures that any changesto
the framework classes are inherited by each application.

Creating the application-level class libraries from the framework class librariesis atask for the
framework's application generator. | did not build a complete application generator for the sample
framework in this session, but the code in Listing 13 shows one way the application-level class
libraries can be programmatically generated from the framework class libraries.

In the design of this framework, each application is assigned a one to three character prefix. For
example, | chose the prefix "swf" (short for Southwest Fox) for the sample application for this
session. The code in Listing 13 expects this prefix as a parameter, and prompts for the directory in
which the new class library is to be created.

The code to create the application-level subclasses from the framework classes is essentially
identical to the code to create the framework classes from the VFP base classes. However,
because the application-level classes are derived from the framework base classes instead of the
VFP base classes, each CREATE CLASS statement must include a FROM clause identifying the
class library where the parent class is located. In addition, the name of each class and classlibrary
at the application level begins with the application's prefix. For example, the application-level class
library for controlsis named swf_Controls.vcx, and the application-level text box base classis
named swf_textbox. This naming convention is arbitrary, but using a naming convetion like this
helps you remember which class you're working with during devel opment.

Listing 13 shows the beginning part of the code to generate the application-level subclasses. The
program istoo long to reproduce al of it here, but the entire program is included in the session
downloads.

Listing 13: This program creates the application-level subclasses derived from the framework base classes.

* Program CREATEAPPCLASSES. PRG

* Aut hor: Ri ck Borup

* Date Witten: 09/05/2007

* Copyright: (c) 2007 Information Technol ogy Associ ates

© 2007 Rick Borup Page 25 of 38

Framework Fundamentals

Al rights reserved.
Conpi | er: Vi sual FoxPro 09.00. 0000. 3504 for W ndows
Abstract: Create application-level classes fromthe franmework cl asses.
Envi ronnent in:
Envi ronnent out:
Par anmet er s:
Ret urns:

¥k X Sk X X

#1 NCLUDE f oxpro. h

LPARAMETERS t cAppPrefi x
| F VARTYPE(tcAppPrefix) <> "C" OR;
NOT BETWEEN(LEN(ALLTRIM tcAppPrefix)), 1, 3) OR;
NOT | SALPHA(t cAppPrefix)
MESSAGEBOX("The application's prefix nust be 1 to 3 al pha characters.",
nb_i constop, "Create application-level base classes")
RETURN
ENDI F
Local | cAppPrefix
| cAppPrefix = LONER(ALLTRIM tcAppPrefix)) + "_

LOCAL | cAppDir, |cAppd assDir
| cAppDir = GETDIR("", "Please select the new application's root directory",
"Create Application Classes", 64)

| F EMPTY(| cAppDir)

MESSAGEBOX("App directory nmust be specified.”, ;

nb_i constop, "Create application-level base classes")

RETURN
ENDI F
| cAppCl assDir = ADDBS(| cAppDir) + "d asses”

* Application-level control classes
#DEFI NE _BaselLi brary ".\C asses\ nyBaseCtrl . vcx"
#DEFI NE _ApplLi brary ADDBS(| cAppC assDir) + | cAppPrefix + "Controls. vecx"

CREATE CLASSLI B _ApplLi brary

CREATE CLASS &l cAppPrefi x. Checkbox OF _AppLi brary as chkBase ;
FROM _BaseLi brary NOMI T

CREATE CLASS &l cAppPrefi x. ConmboBox OF _AppLi brary as cboBase ;
FROM _BaseLi brary NOMI T

CREATE CLASS &l cAppPrefi x. CommandButton OF _AppLi brary as cndBase ;
FROM _BaseLi brary NOMI T

*** And so on for the rest of the classes.

This code isintended to be run by the developer (or the application generator) once for each
application being generated from the framework. Aswith the code that was used to generate the
framework base classes, you will need to close the class designer windows from the IDE after this
code finishes running.

The base application

A framework typically includes an application generator. The developer runs the application
generator once for each new application. The application generator creates a base application for
the new project. The base application, which is created in a directory of the developer's choice,
consists of aVFP project file along with subclasses or copies of the resources furnished by the

© 2007 Rick Borup Page 26 of 38

Framework Fundamentals

framework. As noted earlier in the section on the VFP application wizard, the base application
can generally be compiled into a working executable, although it does nothing useful until the
developer adds the application-specific components to create a solution for a particular need.

The sample framework presented in this session does not include an application generator.
Instead, the base application isincluded in its entirety in the session downloads as SampleApp.

Y ou can open the project file SampleApp.pjx and compile the application yourself, or you can run
SampleApp.exe which has aready been compiled for you. Like all examplesin this session, the
base application was written and compiled in VFP 9.0 SP1.

With the base application open in the VFP Project Manager, it's easy to see how the framework-
level base classes and the application-level subclasses come into play. The value of using a naming
convention that includes a prefix in front of each element's name becomes apparent here. In
Figures 8 and 9, for example, you can easily see which class libraries, classes and program files
belong to the framework and which belong to the application: Everything with a"my" prefix isthe
part of the framework, while everything with an "swf" prefix is a subclass belonging to the
application.

© 2007 Rick Borup Page 27 of 38

Framework Fundamentals

= Project Manager - Sampleap sl
All D ata Daocs

+- il mybazectrd N Mew...

=1l mybaseform
frmappawars

frmbaze Framework
frmok classes
frnok.cancel

aas thrbaze

i myerarhandler

1
eformessagefonm
=1l mvspecialfarms)
frrnabout
frndizplatest
frmzplazh
il registy
W% =wt_contrals
il swb_forms
swf_about
awf_appawareform
swf_bazeform
wun 3wl baszetoolbar
swi_okcancelform
swi_okform
awf_splash
i _base
i _environ
i _hwperlink

| [+

SWF application
subclasses

+ [+ [+

Drescription:
Path: c:hprogram filesmicrozoft vizual forpro Ihfch_hyperlink. wos

Figure 8: Classes and classlibraries prefixed with "my" belong to the framework, while those prefixed with
"swf" belong to the application. The ones without prefixes are VFP foundation classes.

© 2007 Rick Borup Page 28 of 38

Framework Fundamentals

=] Project Manaoger - Sampleapp ™

Al Data Docs Clazzes Other
-1~ Programs . ;

8 myappcls Framework]

B myerrathandler classes jl:ld

B mwformmgr .-

8 mymenumar SWF Application 3

0] _myrptrngr subclass and :

B setobyf ——

O awt_appcls B g: —

(=]

3 swi_main

APl Librares _
P Applications -

Figure 9: Prg-based classes prefixed with " my" belong to the framework, while those prefixed with " swf"
belong to the application. The one without a prefix (setobjrf) isa VFP foundation class.

Customizing the base application

Once the base application has been generated you can begin to customize it for the particular
solution you're creating. In this sample framework, there are five things you should do to give the
application its own identity. These are:

1. Create anicon for the screen'stitle bar;
2. Create an image for the Splash and About forms;

3. If desired, override any default values such as print preview and prompt on exit in the
InitProps method of the application object subclass; and

4. Fill inthe information in the application control table appinfo.dbf (see below for details);
5. Compile the application into an executable (.exe) with aversion number.

After doing these five things, you have a base application that's ready to run. Then it's on to the
real work of adding the forms, custom menu items, reports, data, and other elements necessary to
compl ete the solution.

The sample framework uses a free table called appinfo.dbf to hold many of the variable values
unique to each particular application. Thisis Smply a convenient way for the developer to store
these values. Because they are always required and are never changed by the user, the appinfo
table isincluded in the EXE rather than being deployed as a separate file.

The application object reads the values from the appinfo table and stores them in properties at
application startup time — see method GetApplnfo in framework class myAppCls.prg. Other
methods and objects in the application can then reference these properties as necessary. For
example, the Splash and About forms pull some of the information they display from properties of
the application object.

© 2007 Rick Borup Page 29 of 38

Framework Fundamentals

Figure 10 shows the values in the appinfo table for the sample app, along with annotations
indicating what some of them are used for. See the source code for the sample application for
more detalil.

Appinfo

Cappname 5% Faox 2007 Sample App
Ccaption 5%Fox 2007 Sample App
Cicon iconzh T hreefokopelliz_stamp.ico
Cauthor Rick Borup

Mcopyyear 2007
Ccopynghtinformation Technology dezociates
Cdatetype AMERICAM

L ztatusbar F

Cappprefix 5'F

Lrezource T

Cresource SwWFUSER.DEF

Screen caption
and screen icon

Cdbcname

Chelpfile The Splash form
Chirstform and About form
Cszplashlnl Southwwest Fox 2007 use these values

Ceplazhin2s ample Application
Cdatadir Data
Mlicense kMemo

Figure 10: The appinfo table stores values specific to the application.

Figure 11 shows the sample application with the About form showing. At this point, nothing has
been changed in the base app except for the five things referenced above. Note the application
already has an identity (title, icon, version number, build date, etc.) and already has a "finished"
appearance even before a single form, report, database, or other element of the actual solution has
been added.

© 2007 Rick Borup Page 30 of 38

Framework Fundamentals

#° SWFox 2007 Sample App
File Edit Security Tools Window Help

SWFox 2007 Sample App

Southwest Fox 2007

Sample Application

. . U Version 9.1.1
| L (September, 2007
b | % Unlicensed Copy
I (| Copyright (c) 2007
| - Sl : | Informatien Technology Associates
) www.SWFox.net (All rights reserved.

www.ita-software.com

This product iz protected by U.S. and Internati

License

| copyright laws as described in the license.

Version History

$

A il o e A i Y

Figure 11: After just a bit of customization, the base application already has a finished appear ance.

Adding forms, reports, and data

Thefina step isto add the forms, reports, data, and other el ements necessary to create areal
solution from the base application. The beauty of using a framework is that it takes only afew
minutes to create the base application and establish its unique identity, as show in Figure 11. The
developer can now focus on designing and building the actual solution desired by the client, using
the classes and capabilities provided by the framework as the foundation. Commercia frameworks
typicaly include wizards and builders to make the job even easier.

In the sample application, | added a few solution-specific elements to illustrate the point. The
sample application uses the Customers table from Northwind database included with Visud
FoxPro. The Northwind database is located in the Samples subdirectory under the Visual FoxPro
home directory on your computer.

© 2007 Rick Borup Page 31 of 38

Framework Fundamentals

| built asimple form to display the Northwind Customers table in agrid. The form has a print
button that generates a report of the Customers data. Following are the steps involved in creating
the form and the report, and hooking them into the application.

Create an app-aware form

Thefirst step isto create aform to show the data in the Customers table. Because thisis a non-
modal form, it should show up on the Window menu pad when it's open and should therefore be
based on the "application aware" form subclass. Assuming the current default directory is the root
directory for the sample application project, the customers form can be created with the following
command:

CREATE FORM fornms\ frnCust omers as swf_appawar ef orm FROM cl asses\ swf _f or ns. vcx

VFP automaticaly opens the new form in the Forms Designer so you can modify its properties
and methods. The custom property values for the Customers form are shown in Figure 12.

Properties - frmcustomers.sox

E& FRMCUSTOMERS L
-"-"-" Drata hethods Layout Other Favontes
Customers E]

5 AutoCenter T.-True ~
5 Caption Customers

e Height 350

Load [User Procedure]

& Name FRMCUSTOMERS

Unload [User Procedure]

B WAfidth 625

Figure 12: Name the customersform " frmCustomers' and set other custom properties as shown.

Because there are so many types of data sources and so many ways to interact with datain a VFP
app, afull-fledged framework would typically come with arich set of classes to enable data
access. To keep things smple, the sample framework uses the Northwind database as local data,
which is opened in the OpenDBC method of the application object at startup time. Therefore the
Load event method of the Customers form simply needs to open the Customers table of the
Northwind database.

Listing 14: The Load event method of the Customer s form opens the Northwind Customerstable.

I F NOT USED("Custoners")
USE custoners IN O AGAIN ALI AS cust omers SHARED
ENDI F

To display the data, add a grid to the form using the swf_grid class from the swf_Controls.vcx
class library. Set the Control Source property of the grid columns to the desired columns of the
Customers table, and set the grid's Header captions accordingly.

© 2007 Rick Borup Page 32 of 38

Framework Fundamentals

Below the grid, add a command button based on the swf_CommandButton class and set its
caption to "Print". In the button's Click event method, hook into the framework by calling the
report manager's ShowReport method and passing the name of the desired report:

0App. oRpt Myr . ShowReport ("r pt Cust oners")
The finished form is shown in Figure 13.

p
= Form Designer - frmcustomers.scx

v Customers

2 lcustomer ID Campany Mame Contact Mame Cauntry Phaone

e

Figure 13: The Customersform is built from application-level subclasses, which hooksinto the framework.

Register the form with the framework

In this sample framework, all forms that interact with the forms manager need to be registered in
the FormList table. The Customers form is registered by inserting arow into the FormLigt table,
as shown in Figure 14. Note that the form name registered in the FormList table (frmCustomers,
in this case) must be the same as the Name property of the form and, for .scx-based forms, the
same as the name of the .scx file.

© 2007 Rick Borup Page 33 of 38

Framework Fundamentals

=

Formlist (
Clormname fimCustomers |
Cobjname ofrmCustomers ;
Charname Customer List ,

Mnbrparms 0

LclaszformF f
R Lt i L SR

Figure 14: The Customersform isregistered with the framework viaarow in the formlist table.

The value of the bar name column (cBarName) is the name added to the Window pad when the
form is open.

Add a menu item

The user needs away to launch the Customers form. In the sample application, | edited the main
menu and added an item named Open to the File menu. The Open menu has a submenu named
Customers, which runs a procedure to hook into the framework's forms manager. The menu code
isshown in Listing 15

Listing 15: Code in the Customers menu bar procedur e launches the Customersform using the framework's
forms manager .

0App. oFor m\vgr . DoFor (" " f r nCust oner s")

Note that this same code works whether frmCustomersis a .vcx-based or .scx-based form. The
forms manager object looks up frmCustomers in the FormList table and uses the value of the
|ClassForm property to instantiate the form in the proper way.

Create areport

The report for the sample app isjust a bare-bones report | created using VFP's Quick Report
diaog. Inarea application you would most likely spend time creating a much more useful and
attractive report than this. However, regardless of how ssmple or how complex, al reports are
launched in the same way by using the report manager's ShowReport method.

Note that the sample framework does not implement any of the functionality offered by the
enhancements to the report writer in VFP 9.0. A real framework would typically provide methods
to take advantage of these great new features.

Build the app and go!

That's al thereisto it: With afew smple steps, you've added aform and a report to the sample
application and hooked them into the framework using the forms manager and the report
manager. Y ou're now ready to build the app and runiit.

At runtime, other useful aspects of the framework becomes apparent. For example, when you
open the Customers form it's automatically added to the Window menu using the bar name
specified in the formligt table, as show in Figure 15.

© 2007 Rick Borup Page 34 of 38

Framework Fundamentals

¢ SWFox 2007 Sample App

File Edit Security Tools | Window Help
i3 Customers Cude co [E]@
Close

Customer ID (Comg Close Al Contact Mame Country Fhone fad

_pALFKI Alfred e ——— Maria Anders Germany 030-0074321
AMATR AnaT = = - Ana Trujillo Mexico (5) 555-4720
AMTOM Antonic Moreno Tagqueria Antonio Maoreno Mexico (5)555-3032
AROUT Around the Haorn Thomas Hardy UK (171) 555-7738
BERGS Berglunds snabbkdp Christina Berglund Sweden 0921-12 34 65
BLALIS Blauer See Delikatessen Hanna Moos Germany 0621-08460
BLOMP Blondesddsl pére etfils Frédérique Citeaux France 88.60.15.31
BOLID Bdlido Comidas preparadas Martin Sommer Spain (91) 5556 22 82
BOMAF Bon app Laurence Lebihan France 91.24.4540
BOTTM Bottorm-Dollar Markets Elizabeth Lincoln Canada (604) 555-4729
BSBEY B's Beverages Victoria Ashwarth UK (171) 5551212
CACTU Cactus Comidas para llevar Patricio Simpsaon Argentina (1) 135-5555
CEMNTC Centro comercial Moctezuma Francisco Chang Mexico (5)555-3302
CHOPS Chop-suey Chinese Yang Wang Switzerland |0452-076545
COMMI Comércio Mingirg Pedro Afonso Brazil (11) 555-7647 |1,

Figure 15: When the Customersform is open, the framework addsits name to the Window menu pad.

Note that Customer List is preceded by the number 1 on the Window menu pad. This number is
added automaticaly by the framework based on how many registered forms are open and the
order in which they were opened. When a second form is opened it is assigned number 2, and so
on.

To illugtrate this, | created a second form called Customer Detail. In the sample app, you can
open the Customer Detail form by double-clicking on a customer 1D in the Customer List form.
Asyou can seein Figure 16, the Customer Detail form is assigned number 2 in the list of open
forms on the Window pad.

© 2007 Rick Borup Page 35 of 38

Framework Fundamentals

|<'* SWFox 2007 Sample App
File Edit Security Tools | Window Help

. Cydle Cirl+F1
=
Close
Customer ID (Comg Cloze all Contact Mame Country Fhone -
ALFKI Alfred ! Cust List Maria Anders Germany 030-0074321
ANATR Ana T, o SemerE : 0 Trujillo Mexico (5) 555-4729
ANTON _ |Anfon. = custemer Betal JAntonio Marena Mexico (5) 5653032
AROUT ; .
i Customer Detail x
o s =]
BLAUS
Customer D |
BLOMP ALFKI
BOLID Company Mame | Alfreds Futterkiste
BOMAP
BOTTH Contact Mame | Maria Anders
BSBEV Contact Title | Sales Representative
CACTU
CENTC Address | Obere Str. 57
CHOPS : : i
COMMI City | Berlin Region | MULL.
Postal Code | 12209 Country | Gerrnany
Phone | 020-0074321 Fax |030-0076545
QKI l —

Figure 16: The Customer Detail form isthe second form to be opened so the framework assignsit number 2
in the Window menu pad.

The Customer Detail form also illustrates the use of the framework'’s display-only text box class,
which is used for the Customer ID. The cyan back color isavisua cue to the user that the value
in the text box is read-only. The other controls on the form are based on the standard application-
level subclassesin the swf_controls.vex class library.

For demo purposes, the OK and Cancel buttons on the Customer Detail form do
nothing but release the form. Because the text boxes on this form are sourced directly
from the Northwind Customers table, any changes you make in the form will be
written to the Northwind database regardless of whether you click OK or Cancel.

When aregistered form is closed, its name is removed from the Window menu pad and the
remaining forms are renumbered. For example, if the Customer List form is closed while the
Customer Detail form is still open, the Customer Detail form reverts to number 1 in the list. All of
this functionality is automatically supplied by the framework for forms based on the AppAware
subclass.

© 2007 Rick Borup Page 36 of 38

Framework Fundamentals

Other helpful framework classes

The classes included in the sample framework represent some of the essential functionality
typically provided by any framework. One of the biggest pieces I've left out of the sample
framework is any kind of data handling classes. Because of the diversity of data sources and the
many ways VFP can access data, that topic meritsits own session, if not an entire book, al by
itself. Another maor functional piece typically provided by a framework, particularly in an n-tier
design, is the concept of a middle tier business object which coordinates with the user interface on
one side and with the data handling layer on the other.

Frameworks can aso include awide variety of other classes and methods to help the devel oper
incorporate commonly used functiondity in an application. A few examples are classes to
facilitate office automation, a set of progress bar classes for various uses, a security module to
control usernames and passwords and enable different levels of access to the application's
functions by user, and the ability to run external applications for example by using ShellExecute.

Final Thoughts

A good framework is avauable tool. Learning how to use one helps you build applications
quickly and easily. A commercial framework typically requires a significant learning curve but
pays off with arich variety of classes and utilities to use when building applications. Creating a
basic framework of your own is auseful learning experience, as | hope this session has shown.

If you're inspired to go on and create a more complete framework of your own, great. On the
other hand, if you're more inclined to explore what the commercia frameworks have to offer, |
hope this session has helped you understand what a framework is al about and what kinds of
things you can expect it to do.

Resources

Following is alist of some commercia frameworks for Visual FoxPro. The lists are in alphabetical
order, with no bias toward any particular one of them intended or implied.

Commercial frameworks for Visual FoxPro

Codebook Framework for Visual FoxPro. Open Source. http://sourceforge.net/projects/codebook

Mere Mortals VFP Framework. Oak Leaf Enterprises. http://www.oakleafsd.com

Visual FoxExpress®. F1 Technologies®. http://www.fltech.com/VFE

Visual MaxFrame Professional. Visionpace. http://www.visionpace.com/vmpsite

Visual ProMatrix. ProMatrix Corporation. http://www.promatrix.com

Web-oriented frameworks
Active FoxPro Pages. ProLib Software GmbH (Germany). http://www.afpages.de

ActiveVFP. dotComSolution. http://www.activevfp.com

West Wind Web Connection. West Wind Technologies. http://www.west-wind.com

© 2007 Rick Borup Page 37 of 38

Framework Fundamentals

Acknowledgments and Copyrights

Microsoft® and Visual FoxPro® are registered trademarks of Microsoft Corporation in the
United States and other countries. LEGO and LEGOLAND are trademarks or registered
trademarks of The LEGO Group. Tinker Toys and Lincoln Logs are trademarks or registered
trademarks of Hasbro, Inc. All other trademarks are the property of their respective owners.

ITA isaregistered service mark of Information Technology Associates in the state of Illinois.
Copyright © 2007 Rick Borup

© 2007 Rick Borup Page 38 of 38

