
VFP Version Control with Mercurial

© 2011 Rick Borup Page 1 of 59

This paper was originally presented at the Southwest Fox conference
in Gilbert, Arizona in October, 2011. http://www.swfox.net

VFP Version Control
with Mercurial

Rick Borup
Information Technology Associates

701 Devonshire Dr, Suite 127
Champaign, IL 61820

Voice: (217) 359-0918
Email:rborup@ita-software.com

Mercurial is a distributed version control system (DVCS) well suited for use with Visual
FoxPro application development. While distributed version control systems are based on a
decentralized model designed to facilitate team software development, they are also useful
for the independent developer who's working solo. Together with the TotoiseHg shell
program for Windows, Mercurial offers VFP developers a powerful tool for managing their
version control requirements. Come to this session and learn how to integrate Mercurial into
your daily VFP development workflow.

VFP Version Control with Mercurial

© 2011 Rick Borup Page 2 of 59

Table of Contents
Table of Contents .. 2

Distributed Version Control System Concepts.. 4

Installing Mercurial and TortoiseHg on Windows... 6

Getting to know Mercurial .. 7

Key concepts and terminology ... 7

Working from the command prompt... 9

hg – the Mercurial command.. 9

Creating a local repository ..10

Doing the initial commit...11

Making the first change...13

Exploring differences...14

Updating and backdating ...14

Introducing TortoiseHg...15

Branching and merging within a repository ...18

Working with remote repositories ...23

Handling merge conflicts ..26

Special Considerations for VFP ...33

What to include in the repository..33

What to ignore ..33

What to do about binary files..34

The effect of recompiling all files...36

Case sensitivity ...36

Integration with the VFP project manager ..36

Integrating Mercurial into your daily development workflow...37

Step 1 – Create a local repository ..37

Step 2 – Enter your configuration settings ..39

Step 3 – Set up your .hgignore file...40

Step 4 – Add files and do the initial commit ..40

Step 5 – Rinse and repeat ...43

Field notes from working with Mercurial ..44

VFP Version Control with Mercurial

© 2011 Rick Borup Page 3 of 59

Backups...44

Portable repositories...44

Use descriptive messages with every commit ...44

Tips, tricks, and advanced techniques..45

Getting help ..45

Fixing Mistakes ...46

Revert ..46

Rollback ..47

Backout ...48

Previewing actions ..48

More about cloning ...50

Are you being served?..51

Hosting solutions...55

Tips..55

Basic commands ..55

Working with a remote repository...57

Mercurial extensions ...57

FAQs ...57

Resources...58

Downloads for Mercurial and TortoiseHg..58

References and support...58

Summary..59

VFP Version Control with Mercurial

© 2011 Rick Borup Page 4 of 59

Distributed Version Control System Concepts
All version control systems (VCS) have in common the concept of a repository. The
repository is the location where the VCS stores the information it uses to track the changes
to a project’s files over time.

You can think of a repository as a kind of filing cabinet where the records of changes are
kept. While different version control systems may use different physical
forms for their repository—be it file-based, a database, or whatever—
conceptually it’s always the same thing.

There are two distinct types of version control systems, centralized and
distributed. As its name implies, a centralized version control system
(CVCS) has a single central repository that is shared by all developers
working on the project. In order to work on a file, a developer must check it out from the
central repository. The checkout process creates (or updates) a copy of the file on the
developer’s local machine, and marks the file as locked in the central repository. Other
developers cannot check out the same file until the first developer checks it back in. While
this type of version control can be useful, the need to lock files often creates bottlenecks for
team development.

Figure 1: A centralized version control system features a single central repository shared by all members of
the development team.

In contrast, a distributed version control system (DVCS) does not require a central
repository. Instead, each developer has their own local repository that resides on their own
local machine. Along with the local repository is the concept of the working directory,
sometimes also referred to as the working copy. The working directory is simply the name
given to the set of folders and files with which the developer directly interacts during the
development process. For VFP developers, the working directory is the project folder.

VFP Version Control with Mercurial

© 2011 Rick Borup Page 5 of 59

The concept of a local repository give rise to one of the best features of a DVCS, even for the
solo developer: it’s fast! Because commits and other interactions with the local repository
take place on the local machine at hard drive speeds, there is no latency or dependency on
a connection to a remote repository.

In a DVCS, collaboration among members of a team is facilitated by the ability for
developers to interact with one another’s repositories. For example, with appropriate
authorization one developer can create a clone (an exact copy) of another team member’s
repository. The two developers can then begin collaborating on the project from the same
starting point. The developer who creates the clone receives the current version of all
tracked files in the working directory along with the project’s complete version history in
the local repository.

When a developer is ready to store a set of changes, they commit those changes to their
local repository. Because this occurs on their local machine, it has no impact on other
members of the team. When they’re ready, developers can share their changes with other
developers by allowing them to create a clone, to pull changes into their own local
repository, or to push their changes to a central repository or even directly to another
developer’s local repository.

Figure 2: In a distributed version control system (DVCS), each developer has their own local repository and
can share changes directly with other developers and/or with a central repository.

Mercurial and Git are two popular DVCS. Git is popular with Ruby on Rails developers,
among many others. Mercurial is popular with Python developers, partly because it’s
written in Python. Mercurial and Git are conceptually and functionally very similar,
although their command syntax differs somewhat. Both are quite fast, and both offer
integration with the Windows® shell via the Tortoise shell extension (TortoiseHg or

VFP Version Control with Mercurial

© 2011 Rick Borup Page 6 of 59

TortoiseGit, both of which derive from TortoiseSVN for Subversion). However, Mercurial
appears to be growing as the preferred choice by developers working on Windows®.

Mercurial commands are straightforward and mostly intuitive. Mercurial can use http and
https to clone, push to, and pull from a remote repository so no special or proprietary
protocols are required.

Installing Mercurial and TortoiseHg on Windows
The Web home of Mercurial is http://mercurial.selenic.com. This site includes a page of
links for several variations of Mercurial installer for Windows®, some of which include the
TortoiseHg Windows shell extension.

If you’re installing Mercurial on Windows, however, you can go to the TortoiseHg site and
download the most recent installer from there. Go to http://tortoisehg.bitbucket.org and
download the current release. The installer includes both the Mercurial distributed version
control software and the TortoiseHg Windows shell extension. At the time of this writing
the current versions are TortoiseHg 2.0.4 and Mercurial 1.8.3, but it’s likely there will be
newer point releases by the time you read this.1

Note that there are different installers for 32-bit Windows and for 64-bit Windows, so be
sure to download the appropriate one for your system. There is also a link to the release
notes page, which you may want to browse through for information on what’s new in the
current release as well as what may be planned for future releases.

TortoiseHg and Mercurial are installed from a Windows Installer (.msi) file. After
downloading, double-click on the file or right-click and choose “install” from the context
menu. TortoiseHg and Mercurial are both installed to the C:\Program Files\TortoiseHg
folder on your local machine.

Although there is an extensive set of configuration options available, very little is actually
required to begin working with Mercurial and TortoiseHg. Global configuration settings are
stored in a mercurial.ini file in your user profile (e.g., C:\Users\Rick), while project-specific
configuration settings are stored in an hgrc file in the local repository. The basic
configuration settings are discussed later on as they come up in examples.

1 Updated versions of TortoiseHg and Mercurial are released approximately once a month on the TortoiseHg
website. As I finish this paper in September 2011, the current versions are TortoiseHg 2.1.3 and Mercurial
1.9.2.

VFP Version Control with Mercurial

© 2011 Rick Borup Page 7 of 59

Getting to know Mercurial

Key concepts and terminology
Before you get started working with Mercurial, it’s important to have a firm grasp on some
of the basic concepts and terminology. Many of the concepts relate directly to the actual
commands you use to interact with Mercurial.

The working directory is where you work on your project. For any given project, the
working directory is simply the generic name that is used to refer to the project’s root
folder, its subfolders, and the files they contain. In Visual FoxPro, the working directory is
your VFP project folder.

Each project that is placed under Mercurial version control has a local repository. In
Mercurial, a project’s local repository is located in a subfolder named .hg located directly
under the root of the working directory. A project’s local repository is where the history of
changes to the project’s files is stored.

Mercurial tracks files, not folders. It provides a mechanism for specifying which files are to
be tracked and which are to be ignored.

The local repository stores information about the changes between successive revisions of
the files being tracked. This information is called a changeset. Except for the initial commit,
the local repository does not store complete copies of the files it is tracking; instead, it
stores only the changesets, which are also sometimes referred to as deltas.

Changesets are identified by a revision number and a changeset ID. The revision number is
an integer value starting at zero for the initial commit and incremented by 1 for each
successive commit. The changeset ID is a SHA-1 hash displayed as a 12-character
hexadecimal value. Revision numbers are unique only within a local repository, whereas
changeset IDs are globally unique. Together they are usually written as the revision
number, followed by a colon, followed by the changeset ID as illustrated in Figure 3.

Figure 3: Changesets are identified by a revision number, which is local to the specific repository, and by a
changeset ID, which is global.

When you’ve made some changes to a file or files in your working directory and are ready
to have Mercurial store a record of those changes in the local repository, you do what’s
called a commit. A commit creates a new changeset in the local repository.

VFP Version Control with Mercurial

© 2011 Rick Borup Page 8 of 59

Sometimes you need to change things in the opposite direction, i.e., to apply changes stored
in the local repository to the files in working directory. In Mercurial this is called an update.
Unless the working directory and the local repository are already in sync, an update
changes the contents of one or more files in the working directory.

The word update can be a source of confusion when first learning Mercurial. In common
usage the word means “to make more current”, but in Mercurial an update can work either forward
and backward in time. This means that while you can update a working directory to a more recent
changeset from your local repository – for example, a changeset you pulled from another developer –
you can also update a working directory back to an older changeset. It might help to think of the latter
as a backdate instead of an update, but in Mercurial you use the update command in both situations.
The important thing is to remember that an update changes the working directory by synchronizing
its contents with a specified changeset from the local repository.

A remote repository is any repository other than the local one. In Mercurial, a remote
repository is what you clone, push to, or pull from. A remote repository can be anywhere –
on the local machine, on a network, or an online resource accessed via the Internet.

Figure 4: A project’s local repository is stored in the .hg folder underneath the root of the working directory. In
this example, both Bob and Carol are working on a project called “myProject”. Each of them has their own
working directory and underneath that, their own local repository. Because I need to run this presentation
from a single machine, both folders are on my local hard drive, but you can think of them as being on two
different machines. Either way, from Bob’s point of view Carol’s is a remote repository and vice-versa.

VFP Version Control with Mercurial

© 2011 Rick Borup Page 9 of 59

Changesets have a parent-child relationship within a repository. The changeset from which
another changeset was derived is called the parent, and the derived changeset is called the
child. A changeset that does not have any children is called a head revision. The most recent
head revision is called the tip.

Figure 5: Within a repository, changesets have an ancestry based on a parent-child relationship.

Working from the command prompt
Mercurial is a command-driven tool. Therefore the most direct way to use it is from the
command prompt. While you will most likely end up preferring the TortoiseHg shell, which
enables you to interact with Mercurial from a GUI environment, the command line is the
best way to learn Mercurial. Once you learn the basic Mercurial commands and understand
what they do, it will be easier for you to understand and use the TortoiseHg interface.

hg – the Mercurial command

When working from the command prompt, all Mercurial commands are invoked by typing
hg followed by the name of the command. This runs the program hg.exe, which was
installed in C:\Program Files\TortoiseHg and added to your path. For example, type hg
version to see which version of Mercurial is installed.

C:\>hg version
Mercurial Distributed SCM (version 1.9.2)
(see http://mercurial.selenic.com for more information)

Copyright (C) 2005-2011 Matt Mackall and others

VFP Version Control with Mercurial

© 2011 Rick Borup Page 10 of 59

This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

The examples that follow are drawn from the experiences of Bob and Carol, two developers
who work for a small software development company called Megasoft located in Bluemond,
Washington. Bob and Carol are collaborating on a project called myProject, which will be
written in Visual FoxPro.

The project is just getting started. The Megasoft marketing department has promised
customers that this will become the absolutely best app in the industry. However, the
details conveyed to the developers at this point are sketchy, other than being told it must
be awesome. With this in mind, Bob writes the first line of code.

? “Fox rocks!”

This pleases the marketing department, although customers who are shown the early beta
are left to wonder what the app might actually do.

Creating a local repository

Knowing that the project will go through some changes and most likely end up being more
than one line of code, Bob decides to put it under version control. He has heard of Mercurial
and decides to try it. After installing and learning a little about it he bravely sets out to
create the local repository for myProject.

Bob first saves his work as fox.prg in the C:\Bob\myProject folder on his machine. He then
opens a command window, CD’s to the C:\Bob\myProject folder, and issues the hg init
command to create the local repository.

C:\Bob\myProject>hg init

C:\Bob\myProject>

Hmm. There were no error messages, so maybe this succeeded. Bob does a dir command
to see if anything happened.

C:\Bob\myProject>dir
Volume in drive C has no label.
Volume Serial Number is 8869-060D

Directory of C:\Bob\myProject

09/17/2011 04:16 PM <DIR> .
09/17/2011 04:16 PM <DIR> ..
09/17/2011 04:14 PM <DIR> .hg
09/17/2011 04:16 PM 16 fox.prg

 1 File(s) 16 bytes
3 Dir(s) 24,673,058,816 bytes free

VFP Version Control with Mercurial

© 2011 Rick Borup Page 11 of 59

Bob sees that the .hg folder has been created, as expected. Although he knows he’s not
supposed to ever have to actually work directly with any of the files in the .hg folder, he
wonders what’s in there so he does a dir on that folder.2

C:\Bob\myProject\.hg>dir
Volume in drive C has no label.
Volume Serial Number is 8869-060D

Directory of C:\Bob\myProject\.hg

09/17/2011 04:14 PM <DIR> .
09/17/2011 04:14 PM <DIR> ..
09/17/2011 04:14 PM 57 00changelog.i
09/17/2011 04:14 PM 33 requires
09/17/2011 04:14 PM <DIR> store

2 File(s) 90 bytes
3 Dir(s) 24,673,058,816 bytes free

He sees that the .hg folder contains a couple of files and a subfolder named store. It looks
like everything worked.

Doing the initial commit

Bob decides this is a good time to store a record of his work in the local repository. He
knows this is what the commit command is for, so he types hg commit.

C:\Bob\myProject>hg commit
nothing changed

What’s this? Nothing changed? Why not??

Bob scratches his head for a minute, then remembers that Mercurial tracks only those files
that it’s been told to track. He hasn’t told it what files to track yet, so it didn’t know what to
do. Bob remembers this is what the add command is for, so he uses that command to tell
Mercurial to add the files in his working directory to those being tracked for this project.

C:\Bob\myProject>hg add
adding fox.prg

Looking good. Bob now tries to commit again.

C:\Bob\myProject>hg commit
abort: no username supplied (see "hg help config")

2 One exception to this rule is the .hg\hgrc configuration file, which you may want or need to edit manually
when working from the command prompt.

VFP Version Control with Mercurial

© 2011 Rick Borup Page 12 of 59

Starting to get frustrated, Bob takes a short break and thinks back over what he learned
about Mercurial. After a bit he remembers that in order to identify who is responsible for
each changeset, every commit must be associated with a specific username. He looks at the
Mercurial documentation and finds that project-level usernames are stored in the .hg\hgrc
configuration file. That file doesn’t exist yet, so he creates it and enters a username for
himself using the standard first name, last name, email address format.3

C:\Bob\myProject>copy con .hg\hgrc
[ui]
username = Bob Beta <bob@megasoft.com>
^Z

 1 file(s) copied.

Bob uses the copy con[sole] command to create the hgrc file because he knows that if he
used Notepad he would have ended up with hgrc.txt, which Mercurial would not recognize. In your
own work you will most likely be using TortoiseHg, which provides a GUI interface to the global
mercurial.ini and the project-specific hgrc configuration files. I’ve used the manual method here for
purposes of illustration, but in actual use it’s unlikely you’ll need to create or edit the configuration
files manually.

Bob is finally ready to do the initial commit. He remembers that every commit must be
accompanied by a message, which can be included with the commit command by adding
the –m parameter.4

C:\Bob\myProject>hg commit -m "Initial commit"

C:\Bob\myProject>

There are no error messages, just a new command prompt, so it must have worked. Bob
checks the log to see what happened.

C:\Bob\myProject>hg log
changeset: 0:7792cec862ab
tag: tip
user: Bob Beta <bob@megasoft.com>
date: Sat Sep 17 16:45:55 2011 -0500
summary: Initial commit

Cool. The Mercurial log shows Bob that the local repository now contains a changeset
identified as revision 0. It has a unique changeset ID and is tagged as the tip revision. The

3 The username field can contain whatever you want it to, but the first name, last name, email address format
is the accepted standard.

4 If you don’t specify a comment with the –m parameter, Mercurial will open the default text editor, usually
notepad.exe, and prompt you to enter a comment.

VFP Version Control with Mercurial

© 2011 Rick Borup Page 13 of 59

changeset is associated with the username Bob entered in the project’s configuration file, it
was committed on the date and time shown, and it is described as the “Initial commit”.

Making the first change

Early customer feedback shows that the product needs more features, but the marketing
department is still vague on exactly what to add. Bob decides that if saying it once is good,
saying it three times is three times as good, so he makes the following change to fox.prg.

for i = 1 to 3
? “Fox rocks!”

endfor

After testing the change to be sure it works, Bob is ready to commit the change to the
repository. He first checks the status of the working directory to see what’s going to be
committed.

C:\Bob\myProject>hg st
M fox.prg

Sure enough, Mercurial has detected the change to fox.prg and shows it with status M,
meaning “modified”. Bob commits the change to the repository with an appropriate
comment.

C:\Bob\myProject>hg commit -m "changed to 3 times"

He then checks the log to see what’s happened.

C:\Bob\myProject>hg log
changeset: 1:e8f6bd8efd36
tag: tip
user: Bob Beta <bob@megasoft.com>
date: Sun Sep 18 12:57:13 2011 -0500
summary: changed to 3 times

changeset: 0:7792cec862ab
user: Bob Beta <bob@megasoft.com>
date: Sat Sep 17 16:45:55 2011 -0500
summary: Initial commit

The log shows there are now two changesets. By default, they’re listed in reverse
chronological order, with the most recent on top. Bob can see that the commit he just did
has been assigned revision number 1 and has its own unique changeset ID.

VFP Version Control with Mercurial

© 2011 Rick Borup Page 14 of 59

If you remember nothing else from this session, remember the
three basic commands: init, add, and commit.

Exploring differences

One thing developers commonly need to do when working with a version control system is
to compare two versions of a file to see what changed. Mercurial provides the diff command
for this purpose. The diff command take a –r parameter to tell Mercurial which two
revisions to compare. Revisions can be specified either by their changeset ID or by their
revision number.

Still new to Mercurial and not entirely trusting it yet, Bob decides to check and see if
Mercurial correctly recognizes the change he made to fox.prg. From the log, Bob knows that
the first commit was revision 0 and the most recent was revision 1, so he passes those
numbers to the diff command to find out how Mercurial has tracked the change.

C:\Bob\myProject>hg diff -r0 -r1 fox.prg
diff -r 7792cec862ab -r e8f6bd8efd36 fox.prg
--- a/fox.prg Sat Sep 17 16:45:55 2011 -0500
+++ b/fox.prg Sun Sep 18 12:57:13 2011 -0500
@@ -1,1 +1,3 @@
-? "Fox rocks!"
+for i = 1 to 3
+ ? "Fox rocks!"
+endfor

Whoa. What the heck is that funky syntax all about?

Bob takes a look at the Mercurial documentation and finds out what’s he’s looking at is
called a universal diff format. After a bit of inspection he figures out that the line marked
with a minus sign was deleted and the three lines marked with a plus sign were added. He
also observes that the diff output shows the changeset IDs of the two revisions, along with
the date and time they were committed.

Having read ahead in the material, Bob knows that later on he’ll be able to use a visual diff
tool to better see the differences between two revisions, but he’s glad to know about the
universal diff format and how to read it.

Updating and backdating

Bob’s confidence in Mercurial is growing, but he want to see if it can truly handle updating
the working directory to an earlier revision and back again. He knows that the update
command is used for this purpose, and that it can take a revision number as a parameter.

VFP Version Control with Mercurial

© 2011 Rick Borup Page 15 of 59

To check this out, he decides to update the working directory back to his original version of
fox.prg, which is stored as revision 0 in the repository.

C:\Bob\myProject>hg update -r0
1 files updated, 0 files merged, 0 files removed, 0 files unresolved

He then uses the Windows type command as a quick way to view the contents of fox.prg.

C:\Bob\myProject>type fox.prg
? "Fox rocks!"

And voilà! Bob sees that Mercurial has updated fox.prg in the working directory back to the
way it was in revision 0.

To complete the test, he issues the update command with no parameter to tell Mercurial to
update the working directory to the most current revision.

C:\Bob\myProject>hg update
1 files updated, 0 files merged, 0 files removed, 0 files unresolved

Displaying the contents of fox.prg, he sees it once again includes the change he made and
committed in revision 1.

C:\Bob\myProject>type fox.prg
for i = 1 to 3

? "Fox rocks!"
Endfor

At this point, Bob’s confidence in Mercurial is running high and he’s feeling comfortable
with the basic process of adding, committing, and updating. He decides it’s time to
investigate TortoiseHg, the Windows shell for Mercurial.

Introducing TortoiseHg
The best way to learn how Mercurial works is to invoke the individual commands from the
command prompt, as the previous examples have shown. While you can continue to do
everything you need to do from the command prompt, developers who are accustomed to
working in a GUI environment will most likely prefer to use the TortoiseHg shell.

The TortoiseHg shell is tightly integrated with Windows explorer. Most of the features and
functions you’ll use on a regular basis are available from a right-click context menu. The
primary TortoiseHg interface, called the TortoiseHg Workbench, can be launched either
from the context menu or directly from the Windows Start menu.

VFP Version Control with Mercurial

© 2011 Rick Borup Page 16 of 59

Figure 6: The TortoiseHg context menu provides access to the features and functions you’ll most commonly
use when working with Mercurial.

Bob decides to use TortoiseHg to take a look at the work he’s already done. He launches the
TortoiseHg Workbench by right-clicking on the C:\>Bob\myProject folder in Windows
Explorer and choosing Hg Workbench from the context menu. He then selects revision 0 in
the list and begins to explore the TortoiseHg interface as shown in Figure 7.

VFP Version Control with Mercurial

© 2011 Rick Borup Page 17 of 59

Figure 7: The TortoiseHg interface provides a visual, multi-pane interface to Mercurial.

Bob can see that the top-most pane of the TortoiseHg window shows the revision history in
reverse chronological order. He realizes this is the same information he got from the log
command when he was working from the command prompt, although in a somewhat
different format.

The lower panes display detailed information about the selected revision. With revision 0
selected, Bob can see that the fox.prg file was added, what its content was at that time, the
changeset ID that was assigned, and what commit message was associated with it.

Continuing to explore TortoiseHg, Bob selects revision 1 in the list. The lower panes now
display information about that revision, as shown in Figure 8.

VFP Version Control with Mercurial

© 2011 Rick Borup Page 18 of 59

Figure 8: Details of the revision selected in the upper pane in the TortoiseHg Workbench are displayed in the
lower panes.

So far Bob has used TortoiseHg only to review changes he already committed from the
command line, but he knows that later on he’ll most likely stop using the command line and
begin using TortoiseHg exclusively for his commits and other interactions with Mercurial.

Branching and merging within a repository
One of the fundamental requirements for any version control system is the ability to create
and manage branches. Developers create branches whenever it’s necessary or desirable to
separate one line of development from another. Mercurial enables branching, but in a way
that may be somewhat different from what you’re used to if you’ve used other version
control systems.

Mercurial provides two closely related commands for working with branches. The branches
command (plural) displays the branches currently in the local repository, while the branch
command is used to create a new branch.

VFP Version Control with Mercurial

© 2011 Rick Borup Page 19 of 59

Every repository contains a branch named default. If you don’t create any other branches
you’ll most likely never be aware of the default branch’s existence, but it’s there.

Bob decides to embark on a risky change to his project. Rather than displaying “Fox rocks!”
three times, he’s going to push the envelope and go for five times. Not wanting to
jeopardize the stable version that’s already in production, he decides to create a test
branch for this change. He first runs the branches command to see which branches are
currently in the repository.

C:\Bob\myProject>hg branches
default 1:e8f6bd8efd36

Mercurial shows that the default branch is the only branch in the repository, and that its tip
is revision 1. Bob then runs the branch command to create a branch named test.

C:\Bob\myProject>hg branch test
marked working directory as branch test

This is where Mercurial differs from the way some other version control systems handle
branching. Where at this point other version control systems might create an entire copy of
the working directory, sometimes called a snapshot, Mercurial does not do this. Instead, it
simply sets things up so the next changeset that’s committed to the repository will be
marked as belonging to a new branch called test.

Bob makes the change to fox.prg, and the copy in the working directory now looks like this:

for i = 1 to 5
? "Fox rocks!"

endfor

He now does a commit to the local repository, along with an appropriate comment.

C:\Bob\myProject>hg commit -m "changed to 5 times"

Curious what the repository history now looks like, Bob runs the log command. He finds
that there is now a third changeset, which as expected is revision number 2. Bob also notes
that this changeset is marked as belonging to the test branch.

C:\Bob\myProject>hg log
changeset: 2:3dbeadce0d3c
branch: test
tag: tip
user: Bob Beta <bob@megasoft.com>
date: Sun Sep 18 18:07:05 2011 -0500
summary: changed to 5 times

changeset: 1:e8f6bd8efd36
user: Bob Beta <bob@megasoft.com>

VFP Version Control with Mercurial

© 2011 Rick Borup Page 20 of 59

date: Sun Sep 18 12:57:13 2011 -0500
summary: changed to 3 times

changeset: 0:7792cec862ab
user: Bob Beta <bob@megasoft.com>
date: Sat Sep 17 16:45:55 2011 -0500
summary: Initial commit

After extensive testing, Bob determines the change to five times works and is safe to bring
back into the main line of development. To do this, he needs to perform a merge.

In a development environment where branches are being used, one branch is usually
considered to be the “main” branch; other version control systems may refer to this as the
trunk. Typically it’s the branch where the source code supporting the stable, release
version of the software resides. When merging changes from two branches, you generally
want the main branch to be the one on the receiving end of the merge. This is because you
want the merged changes to end up in the main line of development. In other words, you
want to merge the changes from the test branch into the main branch.

Bob wants to merge that changes from his test branch back into his default branch. Having
had some experience with other version control systems, he figures he should use the
branch command to switch back to the default branch. He tries this but receives an
unpleasant surprise.

C:\Bob\myProject>hg branch default
abort: a branch of the same name already exists
(use 'hg update' to switch to it)

Why was the operation aborted? As in most cases, Mercurial’s message are pretty much
self-explanatory. Bob has forgotten that the branch command tells Mercurial to create a
new branch with the specified name. Mercurial is saying it can’t create a branch named
default because a branch with that name already exists. It goes on to suggest the Bob needs
to do an update to switch back to the default branch.

Now, Bob knows very well that the default branch contains the version of fox.prg as it
existed before he made the change he just committed to the test branch. He thinks it seems
counter-intuitive to update the working directory to the older version from the default
branch before doing a merge with the newer version from the test branch. After all,
updating to the default branch would overwrite fox.prg in the working directory and wipe
out the changes he just made, right?

Right. But in fact, that’s exactly what he needs to do, and it’s OK because the merge will
bring the more recent changes back in. Bob issues the update command and specifies he
wants to update to the default branch.

C:\Bob\myProject>hg update default
1 files updated, 0 files merged, 0 files removed, 0 files unresolved

VFP Version Control with Mercurial

© 2011 Rick Borup Page 21 of 59

He then looks at fox.prg in the working directory and sees that, indeed, it’s gone back to the
older version of three times.

C:\Bob\myProject>type fox.prg
for i = 1 to 3

? "Fox rocks!"
endfor

Now that the working directory is again based on the default branch, Bob completes the
merge process by issuing the merge command and specifying the test branch.

C:\Bob\myProject>hg merge test
1 files updated, 0 files merged, 0 files removed, 0 files unresolved
(branch merge, don't forget to commit)

He again checks the contents of fox.prg in the working directory to be sure it’s as expected.

C:\Bob\myProject>type fox.prg
for i = 1 to 5
 ? "Fox rocks!"

endfor

The last step is to commit the merged file to the repository, as suggested by the message
Mercurial displayed after the merge command was run.

C:\Bob\myProject>hg commit -m "merged changes from test branch"

After doing the commit, the log shows that another changeset has been created, reflecting
the merged version of fox.prg.

C:\Bob\myProject>hg log -r3:1
changeset: 3:970dcbd576c8
tag: tip
parent: 1:e8f6bd8efd36
parent: 2:3dbeadce0d3c
user: Bob Beta <bob@megasoft.com>
date: Sun Sep 18 21:05:09 2011 -0500
summary: merged changes from test branch

changeset: 2:3dbeadce0d3c
branch: test
user: Bob Beta <bob@megasoft.com>
date: Sun Sep 18 18:07:05 2011 -0500
summary: changed to 5 times

changeset: 1:e8f6bd8efd36
user: Bob Beta <bob@megasoft.com>
date: Sun Sep 18 12:57:13 2011 -0500
summary: changed to 3 times

VFP Version Control with Mercurial

© 2011 Rick Borup Page 22 of 59

Notice that the tip revision (revision 3) has two parents. This is because revision 3 was
created as the result of a merge between revision 1 and revision 2.

Running the branches command again at this point shows that the default branch is again
the active one.

C:\Bob\myProject>hg branches
default 3:970dcbd576c8
test 2:3dbeadce0d3c (inactive)

This is a good place to take another look at TortoiseHg. Everything Bob just did from the
command line – creating a branch in the local repository and then merging changes from it
back in to the default branch – he could also have done using TortoiseHg.

Looking at the TortoiseHg Workbench, Bob can see that the changes he made are now
included in the revision history in the top-most pane. In addition, he finds that TortoiseHg
uses a graphical representation to nicely illustrate the branch and merge operations he just
completed.

VFP Version Control with Mercurial

© 2011 Rick Borup Page 23 of 59

Figure 9: The TortoiseHg Workbench reflects the changes Bob made to his repository. The creation of the test
branch at revision 2 and the merge back into the default branch at revision 3 can clearly been seen in the
graphical representation of the repository’s history.

Working with remote repositories
Much of the power of Mercurial and other distributed version control systems comes from
their ability to work with remote repositories. This enables team members to easily share
changes with one another while still retaining all the speed and other advantages of using
their own local repository.

In the simplest terms, a remote repository is any repository other than your local one.
Aside from how it’s accessed, a remote repository is no different than a local repository.
The fact that it’s considered “remote” is simply a matter of the developer’s perspective: my
local repository could be your remote one, and vice versa, or we could set up a third
repository that would be considered remote for both of us.

Mercurial provides the clone, pull, and push commands for interacting with remote
repositories.

Megasoft decides to bring Carol in to work with Bob on the development of myProject.
Carol will be working on her own machine but will share changes back and forth with Bob.

To get started, she uses Mercurial’s clone command to create a local copy of the project for
herself. The clone command takes a two parameters, a source and a destination. The
destination is optional, and if omitted the current directory is used. Carol types the
following command:5

C:\Carol>hg clone ..\Bob\myProject
destination directory: myProject
updating to branch default
1 files updated, 0 files merged, 0 files removed, 0 files unresolved

Because Carol was working from her C:\Carol folder and did not specify a destination,
Mercurial cloned the project into the same subfolder relative to her current directory that it
came from on Bob’s machine, namely myProject. Carol does a dir command to verify that
she does indeed have a copy of the myProject folder and all its contents, including a copy of
the local repository with all of the change history to date.

C:\Carol>cd myProject

C:\Carol\myProject>dir
Volume in drive C is OS

5 Because I’m doing all of this on a single machine, I’m using C:\Bob to simulate Bob’s machine and C:\Carol to
simulate Carol’s. In a real world scenario each of them would be using their own individual machines and
would be able to access the other’s machines over a local area network, an intranet, or the Internet.

VFP Version Control with Mercurial

© 2011 Rick Borup Page 24 of 59

Volume Serial Number is 6EDB-0B0A

Directory of C:\Carol\myProject

09/18/2011 10:50 PM <DIR> .
09/18/2011 10:50 PM <DIR> ..
09/18/2011 10:50 PM <DIR> .hg
09/18/2011 10:50 PM 42 fox.prg

1 File(s) 42 bytes
3 Dir(s) 152,899,506,176 bytes free

Working on her local machine, Carol makes a couple of changes to fox.prg to bring it into
compliance with corporate standards. This includes declaring local variables and using the
modified Hungarian naming convention.

local lni
for lni = 1 to 5

? "Fox rocks!"
endfor

When she cloned Bob’s repository, Mercurial created an hgrc configuration file in Carol’s
.hg folder, but it’s not identical to the one in Bob’s repository. The file Carol gets as a result
of the clone command contains the path to the location from which she cloned Bob’s
repository (think of this as a back-link), but it does not include a username. Before she can
commit changes to her local repository she needs to edit her hgrc file and add her own
username. In the listing below, Mercurial has supplied the [paths] section and Carol adds
the [ui] section.

[paths]
default = C:\Bob\myProject
[ui]
username = Carol Coder <carol@megasoft.com>

With that done, Carol can commit her changes to her local repository.

C:\Carol\myProject>hg commit –m “comply with corporate standards”

The log for her local repository now shows the change she committed, along with those
from Bob’s earlier work.6

C:\Carol\myProject>hg log -r4:3
changeset: 4:77ef582612ec
tag: tip
user: Carol Coder <carol@megasoft.com>
date: Sun Sep 18 23:35:54 2011 -0500
summary: comply with corporate standards

6 The –r4:3 parameter tells Mercurial to show only revision 4 (the one Carol just committed) and revision 3.

VFP Version Control with Mercurial

© 2011 Rick Borup Page 25 of 59

changeset: 3:970dcbd576c8
parent: 1:e8f6bd8efd36
parent: 2:3dbeadce0d3c
user: Bob Beta <bob@megasoft.com>
date: Sun Sep 18 21:05:09 2011 -0500
summary: merged changes from test branch

Meanwhile, back in Bob’s office, the project manager walks in and tells Bob he needs to
bring in the changes Carol just made. Bob knows that Mercurial provides the pull command
to get changes from a remote repository. Carol’s local repository is a remote repository
from Bob’s point of view, so he runs a pull command specifying the path to Carol’s
myProject folder as the source.

C:\Bob\myProject>hg pull ..\..\Carol\myProject
pulling from ..\..\Carol\myProject
searching for changes
adding changesets
adding manifests
adding file changes
added 1 changesets with 1 changes to 1 files
(run 'hg update' to get a working copy)

At this point, Bob’s local repository has been updated with Carol’s revision, but his working
directory has not been affected. It still contains the last version Bob saved, which does not
include Carol’s changes. In order to bring his working directory up to date, he needs to run
the update command.

C:\Bob\myProject>hg update
1 files updated, 0 files merged, 0 files removed, 0 files unresolved

Looking at the copy of fox.prg in his working directory, Bob sees that he now has Carol’s
changes.

C:\Bob\myProject>type fox.prg
local lni
for lni = 1 to 5

? "Fox rocks!"
endfor

As before, Bob and Carol could have made these changes using TortoiseHg instead of the
command line. The TortoiseHg Workbench shows the new history in Bob’s repository.

VFP Version Control with Mercurial

© 2011 Rick Borup Page 26 of 59

Figure 10: TortoiseHg shows the changes to Bob’s repository after pulling Carol’s changes.

Handling merge conflicts
In the previous example, Mercurial had no difficulty merging Carol’s changes to fox.prg
with the version in Bob’s repository. However, consider what might happen if Bob makes
some changes to his version of fox.prg while Carol makes some other changes to her
version. In this case it’s possible each of them could make a different change to the same
line of code. If this happens, Mercurial has no way of knowing which change to keep when
the two are merged together. This results in what’s called a merge conflict.

At the end of the previous exercise, Bob had just pulled Carol’s changes into his repository
and had updated his working directory. At that point, Bob and Carol’s both have the same
version of fox.prg.

local lni
for lni = 1 to 5

? "Fox rocks!"
endfor

VFP Version Control with Mercurial

© 2011 Rick Borup Page 27 of 59

During a high-level, closed-door management meeting, Megasoft’s marketing department
convinces senior management that the company really needs to ramp up the feature set in
myProject in order to increase sales. There is some confusion about exactly what needs to
be added, but the meeting breaks up when the donuts run out even though no clear
decision has been made. The VP of Marketing walks away excited, while the Project
Manager walks away knowing that something needs to be done but not sure exactly what.

On his way back from the meeting, the Marketing VP passes by Bob’s office. Not one to
waste any time, he sticks his head in the door and tells Bob to increase the “Fox rocks!”
display from five times to ten times. Customers will love it! His work now being done for
the day, the VP leaves for the golf course, naturally without telling the project manager that
he’s talked to Bob.

The project manager, on the other hand, considers the situation carefully and decides Carol
should be the one to add the new features. He’s a little more conservative that the
Marketing VP so he tells Carol to increase the display to seven times.

Bob makes the requested change to his copy of fox.prg and commits it to his local
repository. Carol makes the changes she was told to make and commits it to her local
repository. Their code now looks like this:

* Bob’s version of fox.prg
local lni
for lni = 1 to 10

? "Fox rocks!"
endfor

* Carol’s version of fox.prg
local lni
for lni = 1 to 7

? "Fox rocks!"
endfor

Bob is in charge of doing the release builds, and company policy says he needs to be sure he
pulls changes from the other developers on the team before doing a build in order to insure
that nothing gets left out. Bob pulls the latest from Carol’s repository.

C:\Bob\myProject>hg pull ..\..\Carol\myProject
pulling from ..\..\Carol\myProject
searching for changes
adding changesets
adding manifests
adding file changes
added 1 changesets with 1 changes to 1 files (+1 heads)
(run 'hg heads' to see heads, 'hg merge' to merge)

VFP Version Control with Mercurial

© 2011 Rick Borup Page 28 of 59

Hmm. Mercurial is saying something about “+1 heads” and displays a message about
running hg heads and hg merge. But the last time Bob pulled changes from Carol’s machine,
he simply had to do an update command. He decides to try that again this time.

C:\Bob\myProject>hg update
abort: crosses branches (merge branches or update --check to force update)

Well, that didn’t work! Something’s clearly different this time. Bob decides to run the hg
heads command as Mercurial suggested.

C:\Bob\myProject>hg heads
changeset: 6:927666924516
tag: tip
parent: 4:77ef582612ec
user: Carol Coder <carol@megasoft.com>
date: Mon Sep 19 19:57:25 2011 -0500
summary: changed to 7 times

changeset: 5:1ba4106239cc
user: Bob Beta <bob@megasoft.com>
date: Mon Sep 19 19:56:49 2011 -0500
summary: changed to 10 times

changeset: 2:3dbeadce0d3c
branch: test
user: Bob Beta <bob@megasoft.com>
date: Sun Sep 18 18:07:05 2011 -0500
summary: changed to 5 times

Reading up from the bottom of the list, Bob recognizes head revision 2 as the one he
created earlier in his test branch. It’s realizes that it’s still part of his repository history, but
understands that it’s of no concern here. He focuses on revisions 5 and 6, which are the two
heads in question. He can see that head revision 5 is the one he just committed; it carries
his username and his commit message noting that he changed to 10 times. Finally, he can
tell that head revision 6 at the top of the list is the result of his pulling changes from Carol,
because it carries her username and a different summary.

Bob is beginning to get the picture. The default branch of his local repository now contains
two heads representing two different sets of changes. Using TortoiseHg, Bob can see this
condition in the graphical display.

VFP Version Control with Mercurial

© 2011 Rick Borup Page 29 of 59

Figure 11: The graphical display in TortoiseHg shows that Bob’s local repository has two heads, one that he
created (rev 5) and the other (rev 6) created by Carol, which was added to Bob’s repository as a result of the
pull.

In addition to suggesting that he run the heads command, Mercurial also suggested that
Bob needed to do a merge. So that’s what he does.

C:\Bob\myProject>hg merge
merging fox.prg

What Mercurial does at this point depends on which tool, if any, Bob has set up to handle
merge conflicts. Bob has been a long time fan of the excellent Beyond Compare utility from
Scooter Software, and has configured Mercurial to use it as his default merge conflict
resolution program. Because there is in fact a merge conflict in this example, Mercurial
opens Beyond Compare’s three-way merge tool so Bob can see and resolve the conflict.

VFP Version Control with Mercurial

© 2011 Rick Borup Page 30 of 59

Figure 12: Mercurial can be configured to use Beyond Compare’s three-way merge tool to resolve merge
conflicts.

Whatever merge tool you use, the concept is the same: there is a base version of the line or
lines in conflict (top center, in Figure 12), there are the two competing changed versions
(top left and top right), and there is some way (the edit panel, bottom) for you to edit the
file and resolve the conflict.

In this case, Bob makes a command decision: he decides to compromise between the two
changes and display the message 8 times. Carol won’t care, since she did what she was told,
and after a few beers on the golf course the Marketing VP won’t remember what he told
Bob anyway. Bob makes the change to the merged version in the bottom panel and saves
the edited file, as shown in Figure 13.

VFP Version Control with Mercurial

© 2011 Rick Borup Page 31 of 59

Figure 13: When a merge conflict occurs, the developer needs to make the change(s) necessary to resolve the
conflict and then save the merged file.

While Bob has been working in Beyond Compare, Mercurial has been is a suspended state
waiting on a resolution to the merge conflict. When Bob saves the merged file and closes
Beyond Compare, Mercurial detects that the conflict has been resolved and completes its
merge operation.7

C:\Bob\myProject>hg merge
merging fox.prg
0 files updated, 1 files merged, 0 files removed, 0 files unresolved
(branch merge, don't forget to commit)

The version of fox.prg that Bob just saved is now stored in his working directory, but his
local repository doesn’t have a record of that change yet. That’s why Mercurial prompted
Bob to do a commit, which he does.

7 In this example, Mercurial knew the conflict had been resolved because it was set up to be integrated with
Beyond Compare. If Bob had not been using an integrated tool and had simply edited fox.prg manually,
Mercurial would have had no way of knowing the conflict was resolved. Mercurial provides a resolve
command to handle this situation. Bob would have run hg resolve fox.prg to let Mercurial know the conflict
had been resolved.

VFP Version Control with Mercurial

© 2011 Rick Borup Page 32 of 59

C:\Bob\myProject>hg commit -m "resolved merge conflict, changed to 8 times"

Bob could now run the log command to see a record of the most recent changes. He can also
view the history in the TortoiseHg graphical interface, as shown in Figure 14. Either way,
he sees that there is a new revision 7 representing the resolution of the merge conflict.

Figure 14: The TortoiseHg graphical display illustrates the merge conflict at revisions 5 and 6, and its
resolution at revision 7.

Let me stress again that everything that’s been done from the command prompt in these
examples could also have been done using TortoiseHg. Don’t get the impression that the TortoiseHg
Workbench is only for viewing – it’s a completely interactive tool for working with Mercurial. I have
chosen to introduce Mercurial’s behavior using its commands from the command prompt because I
believe that’s a better way to learn the fundamentals. Having now learned about the individual
commands, you’ll have a better understanding of what TortoiseHg is doing behind the scenes.

VFP Version Control with Mercurial

© 2011 Rick Borup Page 33 of 59

Special Considerations for VFP

What to include in the repository
One of the first considerations when starting to use a version control system is which files
to include in the repository. When you read about version control systems, the general rule
of thumb is to include only files that you can edit directly, such as program source code
files. There’s no point in including compiled object code files, executable files, and other
files of that nature since you can’t edit them directly and they’re derived from the source
code files anyway.

On the other hand, if you want to enable other developers to create a clone and work on
your project, you need to include everything necessary for them to edit the source code and
build the project. For Visual FoxPro developers this means including forms, reports, menus,
visual class libraries, etc. The issue when it comes to tracking changes to these types of files
in a version control system is that they are binary files, not text files, so they require special
handling. I’ll come back to the issue of binary files a bit later on. For now, let me just
recommend that you include them in your local repository.

You will also want to include any header files (.h,), configuration files (.ini), and so on that
are subject to change over time and are necessary for building and running your project. In
addition, you may want to include other files you might not initially think about, such as
your Inno Setup scripts, readme.txt file, and so on.

Last but not least, don’t forget to include the VFP project files (.pjx and .pjt).

What to ignore
When you run the hg add command without any parameters, Mercurial detects and offers
to include in the repository every file it finds in your working directory. However, there are
typically several types of files whose changes you’ll never want to track. This includes
things like backup files, temporary files, compiled files, zip archives, and so on.

Mercurial provides a mechanism whereby you can tell it which files it should always ignore.
Not surprisingly, it’s called the .hgignore file. This is simply a text file where you can list all
of the individual files, groups of files, and/or folders you want Mercurial to ignore.

The download files for this session include a generic .hgignore file for Visual FoxPro
applications, which you can use a starting point for your own. Note that the file names and
file extensions in the .hgignore file are case sensitive, so most of them appear twice – once
in lower case and once in upper case. This is the only place I’ve found where case matters.

It’s a good idea to create the .hgignore file for a project before you add files to its repository
for this first time. However, if you find you have left something out of the .hgignore file and
end up with a lot more files in the repository than you wanted after the initial commit, you
can always blow away the local repository and start over by simply erasing the .hg folder.

VFP Version Control with Mercurial

© 2011 Rick Borup Page 34 of 59

After the initial commit, you can still make changes to the .hgignore file and they will take
effect on the next commit, but they won’t affect history already in the repository from
earlier commits.

Documentation on the syntax of the .hgignore file can be found at
http://www.selenic.com/mercurial/hgignore.5.html.

What to do about binary files
As every VFP developer well knows, Visual FoxPro stores the source code for forms,
reports, menus, labels, and visual class libraries in tables. Tables are binary files, not plain
text files. When it comes to version control, the issue with binary files is that you can’t do a
diff/merge on them. The ability to view a diff and do a merge between two sets of changes
is a fundamental part of using a version control system, so this presents a problem for
Visual FoxPro developers.

The standard solution to this problem is to use a tool that can create a plain text version of
the source code from the table, and vice versa. After changes are made to source code
stored in a table, the tool is used to create a plain text version and the plain text version is
then committed to the repository.8 When it’s time to build the project, the same tool can be
used in reverse to re-create the table file from the plain text file.

There are several such tools in use, most of which have been around for a long time. Using
them with Mercurial is no different than using them with any other version control system.
I’ve listed some of the popular tools below, along with a few brief comments. For further
information, refer to the source for each of these tools. Many of them have also been
covered in various VFP-related publications over the years, so there’s no lack of
information.

SCCText is the tool that ships with Visual FoxPro. It reads the source code from a VFP
binary source code file (the table) and writing it to a plain text file. These plain text files are
written out to disk with an “a” in place of the “x” in the file name extension – for example,
.sca for .scx files, .vca for .vcx files, etc. For that reason they are commonly referred to
simply as the “a” files.

The SCCText program is a file named scctext.prg in your C:\Program Files\Microsoft Visual
FoxPro 9 folder. It’s designed to work with a single file at a time. Since it’s a VFP .prg file,
you can open it and look at the source code to see how it works, and make modifications if
you want to.

Because of some of the limitations of this tool, many VFP developers have looked for and
developed alternatives over the years.

8 You will probably also want to include the binary files in the repository, but that’s a separate issue and a
separate decision.

VFP Version Control with Mercurial

© 2011 Rick Borup Page 35 of 59

Matt Slay recently published a Visual FoxPro wrapper class for SCCText.prg to create the
“a” files for all the binary files in a project in one step. Matt describes this project in his blog
post at http://mattslay.com/foxpro-class-to-generate-scctext-for-all-files-in-a-project and
has made the source code available for download from http://codepaste.net/9yy1gm.

As it stands, Matt’s class creates the “a” files for all the forms, reports, and visual class
libraries referenced in the project. This comprises not only the files in the project folder
and its subfolders, but also files that exist outside of the project folder such as native VFP
class libraries like the FFC classes and any framework classes you may be using in your
project. As a result, you may end up with “a” files for things you don’t want or need to store
in your repository. While this isn’t really a problem, it would be more efficient if the class
had an option to exclude files that reside outside of the project folder.

Alternate SCCText, also known as SCCTextX, is a community based enhancement to the
standard SCCText program. The project manager for SCCTextX is well-known VFP
developer Jürgen “wOOdy” Wondzinski. SCCTextX is available for download from VFPX.

SCCTextX offers several advantages over SCCText. Quoting from the VFPX webpage:

There are several improvements made to the original SCCText.prg included in Visual
FoxPro:

• Consistent and case insensitive sorting of methods, objects, and properties

• Corrects several bugs in the original version shipped from Microsoft

• Optimizations

• German, Spanish and French localizations

Rick Schummer wrote an article about SCCTextX in the January 2010 issue of FoxRockX,
which is a great source for more information about this tool.

TwoFox is a two-way conversion tool written by Christof Wollenhaupt. It differs from
SCCText and SCCTextX in that it creates XML files instead of plain text files, but its purpose
and use are essentially the same as the other tools. TwoFox is available for download from
www.foxpert.com/downloads.htm.

Toni Feltman wrote about a set of tools she developed to help her work with Subversion,
which she published along with her paper Introduction to Subversion and Tortoise SVN for
Southwest Fox 2009. These utilities could be adapted to assist developers working with
Mercurial, too. Toni has generously granted permission to distribute these tools in the
downloads for this session. They’re included as FeltmanT_Subversion_Tools.zip.

VFP Version Control with Mercurial

© 2011 Rick Borup Page 36 of 59

The effect of recompiling all files
Version control tools typically use a file’s date-time stamp to determine if the file has been
changed. In Visual FoxPro, it’s a best practice to do a Recompile All Files before releasing an
update, if not more often during development. Marking the Recompile All Files check box
when you build a project tells VFP to regenerate the object code stored in visual class
libraries, forms, reports, and the other binary files. The updated files then get written to
disk with an updated date-time stamp.

Because the date-time stamp has changed, version control systems detect these files as
being newer even if the source code did not actually get changed. As a result, these files are
included in the next commit to the repository even though they’re effectively unchanged
from the previous version. This behavior is not unique to Mercurial, but Mercurial is no
exception.

There’s no way around this that I’m aware of – it’s just a fact of life when working with VFP
projects. Fortunately it’s not really a problem. The only downside I can see is that the
changesets include things that really didn’t get changed, and therefore the repository grows
larger over time than it otherwise would. Just don’t be surprised at the number of files that
show up as modified after you build your project with Rebuild All Files marked.

Case sensitivity
As VFP developers are well aware, the VFP project manager sometimes changes the case of
file names. For example, a file you create and save as myClassLibrary.vcx becomes
myclasslibrary.vcx. This would cause problems with case sensitive version control systems
because such systems would treat them as two different files.

Mercurial respects the case sensitivity of the operating system on which it’s running. The
Windows operating system is case preserving but case insensitive. This means a file can be
stored as myClassLibrary.vcx or as myclasslibrary.vcx and Windows knows it’s the same
file either way. Of course, on a Windows system both file names cannot exist in the same
folder at the same time anyway.

Fortunately for us as VFP developers working on Windows, case sensitivity is not a
problem with Mercurial. Quoting from p. 73 of Mercurial: The Definitive Guide (PDF):

7.7.1. Safe, portable repository storage
Mercurial's repository storage mechanism is case safe. It translates file names so that they can be
safely stored on both case sensitive and case insensitive file systems. This means that you can use
normal file copying tools to transfer a Mercurial repository onto, for example, a USB thumb drive,
and safely move that drive and repository back and forth between a Mac, a PC running Windows,
and a Linux box.

Integration with the VFP project manager
Like many modern version control systems, Mercurial does not support the interface
necessary to integrate it with the Visual FoxPro project manager.

VFP Version Control with Mercurial

© 2011 Rick Borup Page 37 of 59

In my opinion, this is not a bad thing.

Although integrating your version control system with the VFP Project Manager may
provide some measure of convenience, there is also a downside. First of all, that interface is
designed around the centralized version control system idea of checking files in and out,
concepts which don’t apply to a distributed version control system. Second, there can be a
performance penalty when working with large projects. And finally, if you’re using a
remote repository and the connection to that repository is unavailable, you’re pretty much
dead in the water because you can’t check out any files to work on them. Sure, there are
workarounds, but it gets messy.

My general rule of thumb, based on my own experience and from talking to others, is not to
integrate your version control system with the VFP Project Manager even if your VCS does
support it. Naturally your opinion may vary, but if you’re using Mercurial the decision has
already been made for you because you can’t do it even it you wanted to.

Integrating Mercurial into your daily development workflow
You’ve seen what Mercurial can do for you, so you decide to install it and begin using it in
your daily Visual FoxPro development work. How do you get started?

Step 1 – Create a local repository
Assuming you have an existing Visual FoxPro project you want to place under Mercurial
version control, the first step is to create the local repository. This is easily done from the
Windows Explorer context menu. The working directory will be the existing root folder of
your project, for example C:\SWFox2011\Sessions\Mercurial\myVFPApp. Right-click on
that folder in Windows Explorer and choose Create Repository Here from the TortoiseHg
menu pad.

VFP Version Control with Mercurial

© 2011 Rick Borup Page 38 of 59

Figure 15: Much of what you’ll want to do with Mercurial, such as creating a new repository, is available from
the context menu in Windows Explorer.

A small dialog window opens and presents a couple of options – you can simply accept the
defaults. When you click the Create button TortoiseHg issues the init command to
Mercurial, which in turn creates the .hg local repository folder in your working directory.

Figure 16: When you use TortoiseHg to create a new repository, it offers a couple of options and shows you
the hg init command it will run.

VFP Version Control with Mercurial

© 2011 Rick Borup Page 39 of 59

Step 2 – Enter your configuration settings
You need to specify a username before you can do any commits to the new local repository.
Many other settings are available, but the username is the only one required at this point.

To set your username using TortoiseHg, right-click on your project’s working directory in
Windows Explorer and choose TortoiseHg Workbench from the context menu. Then choose
Settings from the Workbench window’s File menu. In the TortoiseHg Settings dialog (Figure
17) you can enter both your global settings, which act as the default for all repositories on
your machine, and your local settings, which are specific to each individual project. The
Settings File line indicates which file you’re working with: global settings are stored in the
mercurial.ini file under your user profile, while local settings are store in the hgrc file in the
project’s local repository.

Select the global settings tab in the TortoiseHg Settings dialog, then click on the Commit
item in the list on the left. Enter your name and email address in the username field, as
illustrated in Figure 17. You can enter anything you want here, but the common format is
your first name and last name, followed by your email address enclosed in angle brackets.

Figure 17: The TortoiseHg setting dialog enables you to set both global and project-specific options.

VFP Version Control with Mercurial

© 2011 Rick Borup Page 40 of 59

For now, that’s all you need to do. Click OK to save this information.

Step 3 – Set up your .hgignore file
I recommend you set up the .hgignore file for each project before doing the initial commit.
That way Mercurial knows which files to exclude when you tell it to add files for the first
time. If you left the default option checked when you created the repository in Step 1,
TortoiseHg created an empty .hgignore file for you. Otherwise you can create one manually.
Either way, it’s just a text file so you can edit it using any text editor, including the file
editor in VFP.9

I find it helpful to have a boilerplate .hgignore file for VFP projects stored somewhere on
my machine so I can simply copy it into the working directory when I place a VFP project
under Mercurial version control. I’ve included one in the session downloads, which you’re
free to use and to modify for your own purposes.

Step 4 – Add files and do the initial commit
In TortoiseHg Workbench, select the * Working Directory * line in the list of revisions in the
upper-most panel. Because this is a brand new repository to which nothing has yet been
committed, the Working Directory line is the only entry in the list and is labeled as rev -1.

When you select the Working Directory in the revision list, the lower left panel displays all
the files Mercurial has detected in your project’s working directory. This list of files already
excludes the ones Mercurial knows it should ignore, based what you put in your .hgignore
file; that’s why you wanted to set up the .hgignore file before getting to this point in the
process.

All of the files that TortoiseHg lists are initially marked with a status of “?”, meaning
Mercurial considers them to be “unknown”. This is because you haven’t yet told Mercurial
that you do in fact want to track these files. Doing so is part of the next step.

9 Some text editors automatically add a .txt file name extension if an extension is not specified. Be sure not to
let this happen. Mercurial will not recognize a file named .hgignore.txt – it must be named .hgignore.

VFP Version Control with Mercurial

© 2011 Rick Borup Page 41 of 59

Figure 18: The lower left panel in the TortoiseHg Workbench shows the status of the files in the working
directory.

TortoiseHg makes it easy to do both the add and the commit in one step. First, mark the
check box for every file you want to add to the local repository. You can mark them
individually, or you can simply mark the “check all files” check box above the list (see
Figure 18) and TortoiseHg will mark them all for you.

Note that the .hgignore file itself is included in the list. It’s a good idea to mark the check
box for this file so Mercurial will track the history of changes to it along with those to your
project’s other files.

After reviewing the list of files to be sure it’s the way you want it, enter a commit message
in the field to the right of the list and click the Commit button. A brief comment such as
“Initial commit” is generally considered to be appropriate for the first commit to a new
repository.

VFP Version Control with Mercurial

© 2011 Rick Borup Page 42 of 59

Figure 19: After marking all the files whose changes you want to track, enter a commit message and click the
Commit button to add these files to your local repository.

TortoiseHg displays a dialog asking if you want to add the selected untracked files. This is
how it does the add and commit in one step. Click the Add button to proceed.

Figure 20: If you’ve marked untracked files to be included in the commit, TortoiseHg prompts you to add
them.

And that’s it! Your project is now under Mercurial version control, and the current versions
of all tracked files are now recorded in the local repository. Looking at the upper-most
panel in TortoiseHg, you can see that the local repository now contains changeset 0, which
is marked as the tip revision and which carries your commit message of “Initial Commit”.

VFP Version Control with Mercurial

© 2011 Rick Borup Page 43 of 59

Figure 21: After the initial commit, the TortoiseHg Workbench shows that revision 0 has been recorded in the
local repository.

Step 5 – Rinse and repeat
From here on out, all you need to do is to incorporate a commit step into your regular
workflow whenever you feel it’s appropriate to commit changes to the local repository. For
some developers this may be several times a day, for others perhaps less often. You’ll also
want to add new files as they occur in the development process, but you don’t have to do so
explicitly. Unless they’re excluded by an entry in the .hgignore file, any new files added to
your working directory automatically show up in the list displayed by TortoiseHg when
you go to do a commit, so you can mark and add them just like you did during the initial
commit.

When using Mercurial there is really no downside to doing frequent commits, other than
perhaps the continually increasing size of the local repository. Remember, however, that
Mercurial stores changesets, so it doesn’t create a complete copy of every revised file each
time you do a commit. It only stores enough information to derive the difference between
the current version of the file and the previous version. For text files the changeset can be
quite small, although for binary files even a small change can result in a large delta.

VFP Version Control with Mercurial

© 2011 Rick Borup Page 44 of 59

Field notes from working with Mercurial

Backups

One great benefit of the local repository being a subfolder under the working directory is
that when you make a backup of your working directory you automatically get a backup of
the local repository.

Even though the use of a version control system such as Mercurial eliminates the need to
create and store a series of complete, multi-generational (father – son – grandson) backup
copies of your work over time, it’s still important to make good backups. The advantage of
using Mercurial is that every backup of the project folder includes the local repository. This
means you can overwrite an older backup with a newer one without losing the ability to go
back to an earlier version of a tracked file.

Portable repositories

The local repository is file based, and the links it contains are relative to the working
directory. This means you can copy or cut and paste projects from one location to another
without affecting Mercurial. For example, if you begin working on a project in
C:\Test\myProject and later decide you want to move it to F:\Work\myProject, you can do
so without breaking anything as far as Mercurial is concerned, as long as both the working
directory and the local repository get copied or moved as a unit.

If you work on two machines—for example, one at the office and one at home—you can
synchronize your work between the two by copying the working directory and its local
repository back and forth. I frequently use Dropbox to do this when I need to take work
home in the evening and then bring whatever changes I’ve made at home back to the office
in the morning. This is an admittedly unconventional way of synchronizing things, but it
works as long as the changes you make on one machine don’t diverge from the changes you
make on the other.

The conventional way of sharing changes among machines would of course be to push
changes from one machine up to a remote repository and to then pull those changes down
to the other machine, or to treat both as remote (each from the other’s point of view) and
push and pull changes between them.

Use descriptive messages with every commit

It’s a best practice to use a descriptive message with every commit. This is for your own
benefit as well as for the benefit of other developers with whom you may be collaborating.
You don’t have to write an essay, but it’s helpful to include more than just a cryptic remark
such as “Fixed a bug”. A good commit message describes the changes that make this version
different than the previous one. For example, a good commit message might be “Changed to
say ‘Fox rocks!’ seven times. Declared local variables and used modified Hungarian
notation for variable names.”

VFP Version Control with Mercurial

© 2011 Rick Borup Page 45 of 59

If you’re working from the command line, use the –m option to add a message. If you omit
the –m option, Mercurial opens a file in the default text editor where you can enter the
message. If you’re using TortoiseHg, the Workbench provides a field large enough to enter
a good commit message.

When doing a commit from the command line, you can use the –l or --logfile option to read
the commit message from an external file. If you use a readme.txt file to document the
changes for every release, for example, you could use that file as the source for the commit
message. The syntax looks like this:

hg commit –l readme.txt

I haven’t found a way to do this in TortoiseHg yet, but you can always copy and paste your
comments from another file into the message field in the TortoiseHg Workbench before
committing.

Tips, tricks, and advanced techniques

Getting help
For help with individual commands, simply type hg help <command> from the command
prompt. I use this frequently and have found it to be the easiest way to quickly review what
a command does, what parameters it takes, and what options it offers. For example, to get
help on the commit command, type

C:\Bob\myProject>hg help commit

Mercurial responds with:

hg commit [OPTION]... [FILE]...
aliases: ci
commit the specified files or all outstanding changes

Commit changes to the given files into the repository. Unlike a
centralized SCM, this operation is a local operation. See "hg push" for a
way to actively distribute your changes.

[more follows here]

Mercurial also comes with a set of text-based help files you can explore using any text
editor. These files are installed in the C:\TortoiseHg\help folder.

For TortoiseHg, help is available from the Help menu, which links to an HTML Help file in
the C:\Program Files\TortoiseHg\doc folder. That folder also contains a pair of PDF files;
one is a copy of the book Mercurial: The Definitive Guide and the other is the TortoiseHg
documentation. These resources and more can also be accessed from the TortoiseHg pad
on the Windows Start menu.

VFP Version Control with Mercurial

© 2011 Rick Borup Page 46 of 59

Figure 22: The TortoiseHg pad on the Windows Start menu links to several sources for getting help for both
TortoiseHg and Mercurial.

There are also a lot of fine references and tutorials available online. I mention a couple of
these in the Resources section of this paper, but there are many, many more. As with pretty
much everything else these days, remember GIYF.10

Fixing Mistakes
During your development work there will likely be times when you decide, for whatever
reason, that you want to abandon a set of changes you’ve been working on and go back to
the way things were. This could happen for example if you start down the road with a
certain idea of how to change something and then discover it won’t work the way you
thought it would, or if you get interrupted half way through a set of changes, lose your train
of thought, and just want to start over. Mercurial provides a couple of different ways to help
you out in these situations.

Revert

If you’ve made some changes to one or more tracked files in your working directory and
then decide you want to abandon those changes before you’ve committed them to the local
repository, you can use the revert command to go back to the way things were.

Unless a different revision is specified, the revert command restores the files in the
working directory to the state they were in as of the working directory’s current parent
revision. Normally this will be the version you most recently committed, so a revert
basically gives you an easy way to say “just forget it and start over”.

The revert command takes a parameter to specify the name(s) of the file(s) to be reverted,
or use the --all parameter to revert all changes.

C:\Bob\myProject>hg revert --all

10 Google is your friend.

VFP Version Control with Mercurial

© 2011 Rick Borup Page 47 of 59

reverting fox.prg

Files you’ve modified before reverting are saved in the working directory with a .orig file
name extension.

C:\Bob\myProject>dir
Volume in drive C has no label.
Volume Serial Number is 8869-060D

Directory of C:\Bob\myProject

09/23/2011 10:37 AM <DIR> .
09/23/2011 10:37 AM <DIR> ..
09/23/2011 10:37 AM <DIR> .hg
09/23/2011 10:37 AM 55 fox.prg
09/23/2011 10:36 AM 57 fox.prg.orig

2 File(s) 112 bytes
3 Dir(s) 23,461,097,472 bytes free

The revert command can take other options and parameters, which can be explored using
hg help as noted above.

C:\Bob\myProject>hg help revert
hg revert [OPTION]... [-r REV] [NAME]...
[more help follows here]

Rollback

If you’ve already committed changes to the repository and only then discover you’ve made
a mistake, or if you’ve pulled a set of changes you discover you shouldn’t have, Mercurial’s
rollback command can help you out. The rollback command performs a transaction rollback
on the local repository in the same sense that a VFP rollback command performs a
transaction rollback on a database.

Unlike the revert command, rollback does not alter the contents of the working directory. It
simply provides a way to remove the history of an erroneous or undesired action from the
local repository. You can only rollback one level.

The rollback command is considered somewhat “dangerous” and is labeled as such in the
Mercurial documentation. First of all, there’s no way to undo a rollback. Second, a rollback
is useless once changes have been pushed to a remote repository. If Bob commits a set of
changes to his local repository and then pushes them up to a shared repository, he can still
do a rollback on his local repository but it has no effect on the shared repository. Anybody
who pulls from the shared repository, including Bob himself, will still get the history Bob
rolled back.

VFP Version Control with Mercurial

© 2011 Rick Borup Page 48 of 59

Backout

Mercurial’s backout command provides another way of dealing with undesired changes
that have already been committed to a repository. The effects of the backout command can
become quite complex, resulting in new changesets and sometimes creating the need for
additional merges. If you find you need to use the backout command, take time to become
familiar with it first.

Chapter 9 of Mercurial: The Definitive Guide is a good source of information for all things
relating to finding and fixing mistakes in Mercurial.

Previewing actions
A good way to prevent mistakes from happening in the first place is to preview what’s
going to happen before actually making it happen. Mercurial provides commands you can
use to preview the effect of other commands, while other commands have an option you
can use to preview what they will do.

For example, the add command has a –n option you can use to preview the list of files that
will be added to the repository. Let’s say Bob has intentionally added foo.prg to his project
but has also been playing around with a bar.prg, which he doesn’t want to save but has
forgotten to remove. He uses the –n option to preview what Mercurial would add to his
repository before actually adding anything.

C:\Bob\myProject>hg add -n
adding bar.prg
adding foo.prg

Seeing that Mercurial would add both foo.prg, which he wants, and bar.prg, which he
doesn’t want, he can delete bar.prg before doing the actual add.

Mercurial provides a pair of commands that let you preview actions involving a remote
repository. The outgoing command previews the changes that would be pushed, while the
incoming command previews the changes that would be pulled. These commands have
several options, but in both cases at least one parameter is required in order to specify the
remote repository.

For example, if Bob is ready to push his changes up to a remote repository located at
\hgCentral\myProject (relative to his local repository) he could preview what the push
command would do by running the outgoing command.

C:\Bob\myProject>hg outgoing \hgCentral\myProject
comparing with \hgCentral\myProject
searching for changes
changeset: 0:7792cec862ab
user: Bob Beta <bob@megasoft.com>
date: Sat Sep 17 16:45:55 2011 -0500
summary: Initial commit

VFP Version Control with Mercurial

© 2011 Rick Borup Page 49 of 59

changeset: 1:e8f6bd8efd36
user: Bob Beta <bob@megasoft.com>
date: Sun Sep 18 12:57:13 2011 -0500
summary: changed to 3 times

...

changeset: 7:882b35b6d95f
tag: tip
parent: 5:1ba4106239cc
parent: 6:927666924516
user: Bob Beta <bob@megasoft.com>
date: Mon Sep 19 21:01:46 2011 -0500
summary: resolved merge conflict, changed to 8 times

Because the repository at \hgCentral\myProject is currently empty, Mercurial shows Bob
that all of the changesets in his local repository would get pushed to the remote repository,
starting at revision 0 and going through the tip at revision 7.

As another example, Carol could use the incoming command to see if there are any
changesets in the central repository that she doesn’t have yet.

C:\Carol\myProject>hg incoming \hgCentral\myProject
comparing with \hgCentral\myProject
searching for changes
no changes found

Mercurial shows her that nothing has changed so nothing would be pulled. In this example,
this is because nobody has pushed anything to the central repository for myProject yet, so
it’s still empty. However, this would also be the result if Carol’s local repository was already
in sync with the central repository.

Leaving the central repository out of the picture for the moment, Carol could also use the
incoming command to see if Bob has any changes in his local repository that she doesn’t
have yet.

C:\Carol\myProject>hg incoming ..\..\Bob\myProject
comparing with ..\..\Bob\myProject
searching for changes
changeset: 5:1ba4106239cc
user: Bob Beta <bob@megasoft.com>
date: Mon Sep 19 19:56:49 2011 -0500
summary: changed to 10 times

changeset: 7:882b35b6d95f
tag: tip
parent: 5:1ba4106239cc
parent: 6:927666924516
user: Bob Beta <bob@megasoft.com>
date: Mon Sep 19 21:01:46 2011 -0500

VFP Version Control with Mercurial

© 2011 Rick Borup Page 50 of 59

summary: resolved merge conflict, changed to 8 times

Aha! She sees that at his revision 7, Bob resolved a merge conflict between his version and
hers. This is a change she needs but doesn’t have yet, so she runs a pull command to add
Bob’s changes to her local repository, followed by an update to apply those changes to her
working directory.

More about cloning
Cloning is the process of making a complete copy of a repository from one location to
another. This is a very common way for developers to share their work.

The syntax for cloning a repository is

hg clone source [destination]

where source and destination are URLs.11 A source URL is required. The destination URL is
optional; if not specified, it defaults to the base name of the source.

One example from the Visual FoxPro community is the GoFish4 project currently being
worked on by Matt Slay. Matt placed this project under Mercurial version control and
uploaded the repository to a publicly accessible location on bitbucket.org. You can clone his
project from there.

To do so, first create or choose an empty folder on your local hard drive where you want to
project to reside. Then clone Matt’s repository into that folder from the public URL on
bitbucket.org. The following example illustrates cloning the GoFish4 project into a new,
empty folder under C:\Temp.

C:\>cd Temp
C:\Temp\>md MattSlay
C:\Temp\>cd MattSlay
C:\Temp\MattSlay>hg clone https://bitbucket.org/mattslay/gofish4
destination directory: gofish4
requesting all changes
adding changesets
adding manifests
adding file changes
added 192 changesets with 2727 changes to 259 files
updating to branch default
128 files updated, 0 files merged, 0 files removed, 0 files unresolved

In this example the clone is created in C:\Temp\MattSlay\gofish4 on your machine. This is
because Matt’s project was uploaded to bitbucket.org from a gofish4 folder somewhere on

11 Run hg help urls for more information about specifying URLs for Mercurial.

VFP Version Control with Mercurial

© 2011 Rick Borup Page 51 of 59

his machine. When you clone the repository, that folder name becomes is the base location
for your clone.

Once you have created the clone, you can work with GoFish4 locally on your own machine
as if it were your own project. For obvious reasons, Matt does not allow just anybody to
push changes back up to his public repository, but you can explore and make changes to
your own copy of the project as desired. You can even commit your changes to your own
local repository without affecting Matt’s public repository.

Are you being served?
Mercurial comes with a small, stand-alone, bare bones Web server you can use to provide
remote access to any local repository via http. While not suitable for enterprise level use,
this server is useful for instructional purposes and can also be used to provide quick access
to a repository that might otherwise be inaccessible to another developer.

The Mercurial server is launched simply by running the serve command from the working
directory. By default, it listens on port 8000. Also by default, it is completely open and
allows access by anyone who can reach the machine via the URL, although there are ways
to restrict access, to implement secure access via https, and more. For additional
information, start by running hg help serve and go from there.

As an example, assume that Bob’s machine is not accessible to Carol as a mapped drive or
shared resource on a local area network. However, Bob wants to temporarily enable Carol
to access his repository over the corporate intranet using http. From his working directory
for the project, Bob runs the serve command.

C:\Bob\myProject>hg serve
listening at http://ABCD1234:8000/ (bound to *:8000)

Mercurial responds by letting Bob know his repository is now online at the URL shown,
where ABCD1234 is the name of his machine. Assuming Carol can access that URL, she now
has access to Bob’s repository.

Bob can also take advantage of the built-in Mercurial server to access his own repository
from a Web browser via localhost. To check that the server is working, he goes to
http://localhost:8000/ in his browser and sees the following page.

VFP Version Control with Mercurial

© 2011 Rick Borup Page 52 of 59

Figure 23: After running hg serve from his working directory, Bob’s repository for myProject is available via
http on port 8000. In this illustration, Bob is accessing it via localhost on his own machine.

The server initially shows the log for the project. The navigation links on the left support
other functions. For example, clicking the browse link opens a page listing the files in the
selected revision of the repository, which by default is the tip revision.

Figure 24: The browse function display a list of the files being tracked in the tip revision. The file name is a
clickable link.

The filenames in the list are clickable links, enabling you to view information about the
changeset along with the contents of the files.

VFP Version Control with Mercurial

© 2011 Rick Borup Page 53 of 59

Figure 25: The Mercurial web server enables you to view details about a changeset along with the actual
content of the files in the repository.

Clicking on the diff link, Bob finds that this little Web server can even display the difference
between the selected revision and the previous one, using the universal diff format.

VFP Version Control with Mercurial

© 2011 Rick Borup Page 54 of 59

Figure 26: The built-in Web server can even display the diff between the selected revision of a file and the
previous revision, using colors to help make it more readable.

If you’re interested, you can explore the other functions offered by the Mercurial Web
server on your own.

If Bob wanted to, he could enable Carol (or anybody else) to push changes to his repository.
To do this, he first has to make a couple of entries in the project’s hgrc configuration file.
The first is to indicate that secure http (https) is not required, which it otherwise would be
by default. The second is allow anybody to push changes without requiring authorization.12

Bob creates a [web] section and makes the following two entries in the project’s hgrc file. If
he was using TortoiseHg, he could also do this via the Settings dialog in TortoiseHg
Workbench.

[web]
push_ssl = False
allow_push = *

If the Mercurial server is running when these changes are made, it needs to be restarted for
the changes to take effect. Once that’s been done, it’s ready to go and Carol can push

12 This obviously opens a huge security hole, but under controlled conditions you can do so if only for testing
and experimentation. Remember to shut down the Mercurial server as soon as you’re done using it, though!

VFP Version Control with Mercurial

© 2011 Rick Borup Page 55 of 59

changesets from her repository to Bob’s. On the flip side, Carol could do the same thing on
her machine in order to enable Bob to push changes to her repository over http.

Hosting solutions

You have a few choices if you’re looking for a hosted solution for your Mercurial
repositories. The choice is principally between public hosting or private hosting.

The best list of public hosting solutions I’ve found is at http://mercurial.selenic.com/wiki/
MercurialHosting. Of these, probably the most popular is Bitbucket, which offers several
levels of plans and pricing. According to their website, “All plans include unlimited public
and private repositories”. A free plan is available for projects with up to five users. You can
sign up for an account at https://bitbucket.org.

CodePlex has supported Mercurial since January 2010 – see the announcement at
http://blogs.msdn.com/b/codeplex/archive/2010/01/22/codeplex-now-supporting-
native-mercurial.aspx. Sourceforge.net and Google Code also support Mercurial.

The alternative to a public hosting solution is to set up your own server. One source of
information on various ways to approach this can found at on the Mercurial wiki at
http://mercurial.selenic.com/wiki/PublishingRepositories. Many of the solutions listed
there involve using *nix servers and technologies. For Windows developers the question is,
can Mercurial be hosted on a Windows machine running IIS? I haven’t tried it, but the
answer appears to be a qualified “Yes”. The best reference I’ve found is at
http://stackoverflow.com/questions/818571/how-to-setup-mercurial-and-hgwebdir-on-
iis.

Tips
This section is a somewhat random collection of information and tips about Mercurial
commands that I’ve gathered while learning and working with Mercurial. Some of them
come from my own experience, but many come directly from the
mercurial.selenic.com/wiki/ website, which has a nice “tip of the day” feature.

Some of these things have been covered earlier in the paper, but others have not. I’ve
grouped them into a couple of different categories for ease of reference, but each one pretty
much stands on its own and they’re not presented in any particular order.

Basic commands

hg status – display the status of files in your working directory. Use hg st for short.
Use hg status --change n to see the status of changeset n.

hg summary – summarize the state of the working directory

VFP Version Control with Mercurial

© 2011 Rick Borup Page 56 of 59

hg log – display the history of changesets in the local repository
Use hg log -k <keyword> to search your history for a keyword
Use hg log --style xml to generate the log output in xml format
Use hg log --style compact to display the log output in a more compact format

Revsets are a powerful query language for log and other commands. See
http://www.selenic.com/hg/help/revsets for more information.

See hg help revisions for the many ways to specify revisions.

Visual FoxPro Tip: Browse the repository history in VFP

From the command prompt, do hg log --style xml > log.xml to send the log output to a file named
log.xml. Then, in VFP, do xmltocursor(“log.xml”, “csrHgLog”, 512) to create a cursor you can
browse and work with in VFP.

hg id – identify the working copy or specified revision
Use hg id -i -r <rev> to find the changeset ID for a given revision or tag

hg tag – apply a name to the current or a specified revision
Note that adding a tag creates a new revision (i.e., a new changeset). You can use tags to
search the log. For example, hg log –r “Release version 1.0.1” returns the revision tagged
as “Release version 1.0.1”.

hg rename – rename a tracked file. Mercurial handles this as a copy and delete.

hg manifest – see a list of the current or a specified revision of the project manifest (i.e.,
find out which files are under version control)

hg update – update the files in the working directory to a specific version from the local
repository. Note that you can update to either an older or a newer version than the one
which currently exists in the working directory. Updating to an older version amounts to a
going back in time to an earlier state of the files in the working directory.

hg update --clean – discard uncommitted changes in the working directory, with no backup

hg branch – set or show the current branch name

hg branches – list the branches in the repository

hg merge – merge changes from one branch into another

hg bookmark – with no parameters, show the existing bookmarks; with one parameter, set
a bookmark with the specified name. In Mercurial 1.8 and later, bookmarks can be pushed
and pulled between repositories.

VFP Version Control with Mercurial

© 2011 Rick Borup Page 57 of 59

hg verify – verify the integrity of a repository

hg cat – output the current revision or a given revision of files

hg parent – show the parent(s) of the working directory or revision

Working with a remote repository

hg serve – start the Mercurial server from a folder containing a repository13,14

hg clone – create a copy of a remote repository on the local machine

hg pull – fetch a set of changesets from a remote repository

hg merge – merge other’s changes with the changesets in your local repository

hg push – push a set of changes from your local repository to a remote repository

hg outgoing – preview what hg push would do

hg incoming – preview what hg pull would do

Mercurial extensions

Several extensions are available to apply custom configurations or behaviors to Mercurial.
These are a few of them.

Enable the color extension to get colorized output in the command window. See
http://mercurial.selenic.com/wiki/ColorExtension for more information.

Enable the progress extension to get a progress bar. See
http://mercurial.selenic.com/wiki/ProgressExtension for more information.

Enable the pager extension to get paged output. See
http://mercurial.selenic.com/wiki/PagerExtension for more information.

FAQs

Q: How do I know which files are in my repository? In other words, how do I know which
files are being tracked?

13 If IIS is running, you may need to stop it in order to get to the Mercurial server. This seemed to be true on
my Windows 7 machine but was not required on my XP machine.

14 Once the server is running, you can access it from http://localhost:8000/ in a Web browser. In addition to
showing the repository log (history of changes), there are also links to other functions including Help.

VFP Version Control with Mercurial

© 2011 Rick Borup Page 58 of 59

A: Look at the manifest. From the command line, do hg man. In TortoiseHg, click the
manifest button on the toolbar for a convenient tree-view of the contents of the repository.

Q: How do I switch between branches?
A: Use the update command.

hg update default – change to the default (master) branch
hg update <branchName> – change to branch named <branchName>

Q: Which commands can potentially alter the contents of files in my working directory?
A: hg update, hg merge, hg revert, and hg rename

Q: How do I know if my working directory is current?
A: hg status and hg summary

Q: How do I know which revision(s) my working directory is based on ?
A: hg parents

Resources
Here are a few sources of information and support to help you continue learning about
Mercurial and TortoiseHg.

Downloads for Mercurial and TortoiseHg
TortoiseHg and Mercurial (bundled installer for Windows):
http://tortoisehg.bitbucket.org

Mercurial stand-alone installers, various versions:
http://mercurial.selenic.com. The bundled installer with TortoiseHg is also available from
this site.

Mercurial source control plug-in for Visual Studio:
http://visualhg.codeplex.com

References and support
A Beginner’s Guides to Mercurial
http://mercurial.selenic.com/wiki/BeginnersGuides

Mercurial: The Definitive Guide
http://mercurial.selenic.com/wiki/MercurialBook and also online at http://hgbook.red-
bean.com/read/

Latest news and useful links:
http://mercurial.selenic.com/wiki

VFP Version Control with Mercurial

© 2011 Rick Borup Page 59 of 59

TortoiseHg documentation:
http://tortoisehg.bitbucket.org/manual/2.1

Tutorial by Joel Spolsky:
http://hginit.com

Email listserve:
https://lists.sourceforge.net/lists/listinfo/tortoisehg-issues

Summary
Mercurial is an easy-to-install and easy-to-use distributed version control system. It’s a
great choice for Visual FoxPro developers and others working on Windows machines,
especially when used in concert with the TortoiseHg shell. Mercurial offers significant
benefits not only to teams but also to independent developers working solo.

If you’re using a different version control system but are less than fully satisfied with it,
Mercurial may be just what you’re looking for. Mercurial can import version history from
various other systems including Subversion and git, so migration may be easier than you
think. If you’re not using a version control system at all, what are you waiting for?
Mercurial is a great way to get started.

Copyright 2011 Rick Borup. Windows® is a registered trademark of Microsoft Corporation in
the United States and other countries. All other trademarks are the property of their
respective owners.

