
This paper was originally presented at the Southwest Fox conference
in Gilbert, Arizona in October, 2014. http://www.swfox.net

Refactoring VFP Apps

Rick Borup
Information Technology Associates, LLC

701 Devonshire Dr, Suite 127
Champaign, IL 61820

Voice: (217) 359-0918
Email: rborup@ita-software.com

Do your applications suffer from Stale Software Syndrome? When you crack open a section of
existing code for some simple maintenance work, are you reminded that you’ve frequently
said “I really need to clean this up some day”? Does a simple enhancement request end up
taking hours instead of minutes because you never did clean up that section of code? I’d wager
these are common occurrences for most developers, and the longer these situations linger the
worse they can get. In this session we’ll explore how and why code gets stale, and how
refactoring can be an effective solution.

http://www.swfox.net/

Refactoring VFP Apps

Copyright 2014, Rick Borup Page 2 of 39

Introduction
Code gets stale for many reasons. Developers make changes in a hurry, new features get
tacked on without much regard for the original design, or the original design may not have
been very good to begin with. Programming languages and development environments
evolve and improve, but apps developed in an earlier version often remain stuck there.

Over time, stale code becomes increasingly cumbersome and difficult to work with.
Changes take longer than they should, and new features are delayed because the structure
of the code doesn’t readily accommodate them.

These kinds of accumulated issues are sometimes referred to as technical debt. When
technical debt grows large enough, developers end up spending more of their time working
around it – in essence, paying “interest” on the debt – instead of doing productive work.

When that happens, it’s time to refactor.

What refactoring is
Refactoring is the process of improving the internal design of software without changing its
external behavior.

Internal design refers to the structure of the software. In object-oriented software, this
means the way the classes are constructed and combined as well as the way code is written
within class methods. Refactoring is the process of improving the way the software is
structured, so in that sense refactoring is another word for restructuring.

External behavior means the behavior that can be observed when the software is run. One
of the key tenets of refactoring is that no change be allowed to alter the output produced by
the software for any given set of inputs. A legal refactoring is one that follows this rule,
although not all legal refactorings lead to real improvement.

The most popular and frequently cited book on refactoring is probably Martin Fowler’s
Refactoring: Improving the Design of Existing Code [1], which I’ll refer to throughout this
paper simply as Refactoring.

Purpose of refactoring

In his Ph. D. thesis at the University of Illinois, William Opdyke characterized refactoring as
a way to make software easier to understand, change, and reuse [2].

The classes in an object-oriented software application typically vary in purpose from
general to specific. The more general a component, the more likely it can be reused “as is”
or modified slightly to fulfill a similar requirement. Before a developer can modify or reuse
a class, he or she must first understand it. Once understood, the class becomes easier to
modify or reuse.

Refactoring VFP Apps

Copyright 2014, Rick Borup Page 3 of 39

Fowler points out that without refactoring, the internal structure of software applications
tends to decay over time. This is caused primarily by changes that are made, often under
the pressure of deadlines, without full regard to their future consequences. The original
design loses cohesion, the structural integrity of the software is compromised, and future
changes become more difficult. When this happens, refactoring can help by making the
code more amenable to changes and additions.

In a nutshell, the primary purpose of refactoring is to facilitate the process of change [1].
Conversely, the need to make changes often provides the motivation to begin refactoring.

What refactoring isn’t
It’s important to recognize that refactoring is not about improving performance, fixing
bugs, or adding features.

Improved performance may be a happy by-product of refactoring, although in some cases a
bit of performance may actually be sacrificed in return for a better internal structure. While
not intended to fix bugs, refactoring can often reveal the root cause of a bug and thereby
make the bug easier to fix. And although refactoring itself does not, by definition, add new
features, it is frequently a useful precursor in situations where the existing structure of the
code does not readily support the addition of new features.

Reasons to refactor
The sub-title of this paper is “If it ain’t broke, fix it!”. This is meant to provoke you to ask
“Why would I want to fix something that isn’t broken?” In other words, if a piece of
software is meeting its requirements and performing satisfactorily, why expend any effort
to change it? What’s the potential benefit? Is changing it worth the risk of breaking
something that’s currently working? And, given that refactoring is strictly internal and the
end user isn’t going to notice any difference anyway, who’s going to pay for all that work?

Those are all legitimate questions, and it’s perfectly valid to take the opposing viewpoint
and say “If it ain’t broke, don’t fix it”. I’ll come back to that point of view later, when
discussing some of the risks of refactoring, but for now let’s look at situations where it does
make sense to refactor working code.

Code Smells

When talking about source code, the term “bad smell” refers to something that can be
observed in the design and construction of a piece of software rather than something that
necessarily affects its performance or produces wrong results. In Refactoring, author
Martin Fowler attributes the concept of bad code smells to contributor Kent Beck, who said
(my paraphrasing) that developers can sense when a piece of code needs to be changed in
the same way parents can sense when their baby’s diaper needs to be changed: in both
cases, something just doesn’t smell right.

Every experienced developer has probably encountered bad code smells at one time or
another, either in their own code or in code they’ve inherited from someone else. Some

Refactoring VFP Apps

Copyright 2014, Rick Borup Page 4 of 39

common examples are overly long methods, duplicated code, awkward class construction,
methods with too many parameters, and many more.

When a bad code smell is detected, the question becomes “how bad does it smell, and do I
care enough to do anything about it?”. A developer’s typical thought process may look
something like Figure 1.

Figure 1. A developer’s typical thought process might look something like this.

Chapter 3 of Refactoring is devoted entirely to naming and describing several types of bad
code smells. Knowing how to recognize them helps you identify places in code that are
good candidates for refactoring.

The chapter describes many bad code smells, but this paper mentions only a few that I’ve
commonly run across in my own work. (I hasten to add that I work mostly on my own code,

Refactoring VFP Apps

Copyright 2014, Rick Borup Page 5 of 39

so there’s no doubt who’s to blame for creating these smells in the first place!) The first five
listed here are mentioned in Refactoring, while the remainder are ones I’ve added from my
own experience.

Duplicated Code

How often have you had experiences like these?

 You’re developing a new piece of code that needs to perform some function you
know you’ve already programmed elsewhere, but you can’t remember exactly
where and you don’t have time to go looking for it, so you end up re-writing
essentially the identical code in a new place.

 You need a slightly modified version of some code that already exists elsewhere, and
you even know where to find it, but you’re short on time so instead of creating an
abstract class and then specializing with subclasses, you copy the original code,
paste it into the new location, tweak it to suit the new purpose, and forget about it.

 You find yourself writing essentially the same conditional statement in several
different places in an app. It could be a simple IF…THEN…ELSE or a more complex
CASE statement. Either way, you recognize that the code is making the same
decisions over and over again.

All of these situations, and others, are root causes of duplicated code—one of the most
common of all bad code smells.

Long Method

A long method is one that tries to do too much. Long methods are problematic because
they’re unwieldy, difficult to test, and risky to change. Personally, I don’t believe there is
any ideal length – say, one printed page or less – nor that there is any rigid definition of
what constitutes “too long” or “too much”. I think the definition of these terms depends on
the context, but within a given context it’s generally not difficult to spot methods that
qualify as being too long or trying to do too much.

Large Class

Like an overly long method, an overly large class can lead to problems. When too many
methods are crammed into a single class, the class can become unwieldy and the methods
can become inter-dependent on one other, even if not intentionally. This type of informal
coupling hampers reusability.

Long Parameter List

Methods with a long list of parameters can be cumbersome at best, even with tools like
IntelliSense to prompt for each one as you create a method call. A long list of parameters
may also be an indication that a method is trying to do too much, particularly if not all the
parameters are needed in every path through the method code.

Refactoring VFP Apps

Copyright 2014, Rick Borup Page 6 of 39

Switch Statements

Switch statements (CASE statements in VFP) are commonly used when the code needs to
choose among two or more different but typically related execution paths depending on
some condition. In some languages the logical condition on each leg of the switch statement
is restricted to testing the value of a single variable. In VFP there is no such restriction, so
VFP switch statements can become quite lengthy and diverse.

The question of whether or not a switch statement indicates a bad code smell hinges not
only on its length but also on the level at which it occurs in the object hierarchy of the
running application. The higher up a switch statement occurs, the more likely it is to be
needed in more than one place and therefore the more likely it is to end up being
duplicated elsewhere. A refactoring that pushes the decision down to lowest reasonable
level in the object hierarchy helps reduce the potential for duplication.

Chaining Parameters

Chaining parameters refers to situations where one method passes a parameter to another
method, which in turn passes it to a third method, and so on. While there may be situations
where chaining parameters makes sense – for example, if the first method to accept the
parameter validates or modifies it before passing it on – this is generally indicative of a
structural problem. This is particularly true if the parameter is not actually used by the
methods further up the chain, but rather is there merely so it can be passed on to lower
methods where it is finally used.

Passing local memory variables as parameters within a class

The code smell arises when a method on a class passes one of its own local memory
variables as a parameter to another method on the same class. There may be valid reasons
for this, but it would generally be considered better design to use a class property in place
of the local memory variable, if for no other reason than that to help avoid the “long
parameter list” smell.

VFP Code Smells

There are some code smells that tend to be unique to Visual FoxPro apps. Most of them can
be attributed to VFP’s roots in FoxPro for DOS (FPD). Many VFP developers first “learned
how to do it” in FPD and still carry some of those old habits with them when working in
VFP. I am no exception here.

Procedural Code

VFP still allows procedural code, and the compiler doesn’t impose any penalty for using it.
As a result, it’s not uncommon to find older VFP apps whose structure is a hybrid mixture
of procedural and OOP design elements.

Other than a tiny main.prg to act as the stub for launching an app, procedural code in VFP
qualifies as a bad code smell because the scope of variables can be vague, procedure and
function calls appear to exist in a vacuum, it can’t take advantage of encapsulation of data
or polymorphism of method names, and so on. It’s usually not difficult to convert

Refactoring VFP Apps

Copyright 2014, Rick Borup Page 7 of 39

procedural code to OOP, so there’s really no excuse for allowing old procedural code to
hang around in a VFP app.

Business logic in event methods

In FoxPro for DOS, it was common for business logic to be written directly in the Valid
event of a field in a screen program, or at best delegated it to a function or procedure in the
screen’s Cleanup code. Either way, all the code was in the screen program itself. The
concept of separating business logic from presentation wasn’t widely used in those days.

As FPD developers transitioned to VFP, that kind of thinking sometimes came along for the
ride and business logic ended up being written in the Click event method of a VFP form
instead of in a separate business class. The problem with placing business logic in an event
method is that it’s not reusable. If the business logic that runs when a user clicks on a
control on a form is embedded in the form itself, there’s no good way to run that same code
from another place in the app.

Technical Debt

We incur technical debt when we write code the quick and dirty way. The interest we pay
on technical debt is the time it takes to go back and do it right. Refactoring is one way to
pay off technical debt, but not all refactoring is debt payment.

A lot is being written and said these days about xDD: test-driven development (TDD),
behavior-driven development (BDD), and so on. In the real world, a lot of us work under
what I call deadline-driven development (DDD).1

When working under deadline-driven development, a developer may realize he or she is
incurring technical debt even as the code is being written but may also choose to live with
it temporarily because of the deadlines and other pressures. The problem is “temporary”
often turns into “permanent” as other tasks come along and take priority, so the technical
debt is never paid off.

Technical debt doesn’t only result from hurry-up design. Over time, even the best designs
decay as changes are made and additions tacked on. Whatever its cause, there is a point at
which dealing with technical debt begins to suck up unreasonable amounts of time.

Other Reasons to Refactor

Bad code smells aside, the primary driving force for refactoring is the need to make
changes to an application whose existing structure doesn’t lend itself well to those changes.
Evolving standards can be a stimulus for refactoring when code written to conform to
earlier standards is made obsolete by newer standards or technologies. Even without code
smells, technical debt, the need to make changes, or changing standards, refactoring can be
employed to improve the clarity of existing code for other team members who may be
unfamiliar with it.

1 I know DDD also stands for domain-driven design, but that’s a different story.

Refactoring VFP Apps

Copyright 2014, Rick Borup Page 8 of 39

How to refactor
This section describes a few of the refactoring techniques I commonly use. With the
exception of the first, the names of the techniques listed here are from Refactoring.

Rename Variables

Problem: The name of a variable does not describe the data it holds.
Solution: Rename the variable.

Renaming variables is not strictly a refactoring because it doesn’t change the structure of
the code, so you won’t find it in Fowler’s catalog of refactorings. In my own work, though,
renaming variables is often the first thing I do when I begin working with an unfamiliar
application whose meaning is not initially clear.

Compilers need only valid syntax, but developers need understanding. Cryptic variable
names don’t matter to the compiler, but they can be problematic for human beings because
they obscure, or at best fail to reveal, the meaning of what they represent. When working
with a piece of code whose variable names do not convey much meaning, changing the
variable names is an easy way to improve understanding.

Renaming variables is a deceptively simple but nonetheless powerful technique. Not only
does it help the developer who does the actual renaming, but it also improves the code’s
readability for others who may follow. Consider the following line of code:

lnT = lnP * (1.00 + lnM/100)

It’s clear that it multiplies two values and stores the result in a third, but it’s not at all clear
what the three variables represent. The person who wrote this code probably knew what
each one stood for at the time, but the developer who later inherits this code doesn’t get a
clue.

Inspection of the context in which this code appears (not shown) reveals that lnT is a total
amount, while lnP is a price and lnM is a markup percentage. A simple renaming makes this
clear to anyone reading the code:

lnTotalPrice = lnBasePrice * (1.00 + lnMarkupPercent/100)

The beauty of object oriented code is that changing the names of locally scoped variables
has no effect on the rest of the system. The principle is the same for class properties,
although it entails more work because changing the name of a property also requires
changing it everywhere that property is referenced. The use of setter and getter methods
can mitigate the effects of changing a property name – more on that later.

Rename Method

“The name of a method does not reveal its purpose.
Change the name of the method.” [1]

Refactoring VFP Apps

Copyright 2014, Rick Borup Page 9 of 39

Like Rename Variables, Rename Method is a simple but useful refactoring. The convention is
that the name of a method should contain a verb and describe what the method does. For
example, consider a method named TotalPrice, a name that is vaguely meaningful but
which does not really describe what the method does. If it turns out the method calculates a
total price, then a better name for that method would be CalculateTotalPrice.

Extract Method

“You have a code fragment that can be grouped together.
Turn the fragment into a method whose name explains the purpose of the method.” [1]

As a method is initially being developed, it’s not uncommon for the developer to embed a
few lines of code that are required by the method but which don’t necessarily belong inline.
If such a fragment is likely to be needed elsewhere in the system, the design can be
improved by extracting it from its original location and making it into a separate method.
The Extract Method refactoring moves the fragment to a new method with its own name
and replaces the inline code with a call to the new method.

In the following code, the second line truncates the fractional cents in a monetary amount.
This is a generic function that’s likely to be needed elsewhere, so it probably deserves to be
a method of its own.

lnTotalPrice = lnBasePrice * (1.00 + lnMarkupPercent/100)
lnFinalPrice = lnTotalPrice – mod(lnTotalPrice, .01)

After applying the Extract Method refactoring, the code looks like this:

lnTotalPrice = lnBasePrice * (1.00 + lnMarkupPercent/100)
lnFinalPrice = this.TruncateFractionalCents(lnTotalPrice)

Function TruncateFractionalCents(tnValue as Number) as Number
Return tnValue – mod(tnValue, .01)

Note that the new method TruncateFractionalCents has a meaningful name.

Move Method

“A method is, or will be, using or used by more features of another class than the class on
which it is defined.
Create a new method with a similar body in the class it uses most. Either turn the old method
into a simple delegation, or remove it altogether.” [1]

Fowler describes moving methods as the “bread and butter of refactoring” [1]. Move
Method is similar to Extract Method, but instead of creating a new method from a fragment,
you’re moving an entire method to another class. Move Method requires more analysis to
determine if and when to do it, and it requires more work to implement, but the benefit is a
looser and more flexible design.

Refactoring VFP Apps

Copyright 2014, Rick Borup Page 10 of 39

In the previous example, Extract Method was applied to move the truncate fractional cents
calculation from its inline position into its own method. The unanswered question is, which
class does the new method belong in? If the methods in the original class are, for example,
primarily devoted to calculating the price of line items on an invoice, then a generic method
such as TruncateFractionalCents is probably more well suited to a class whose other
methods are also generic arithmetic functions.

Continuing with the example above, the Move Method technique can be applied to move the
TruncateFractionalCents method to a class named ArtithmeticFunctions. To implement
this, first copy the method from the original class to the target class. Then delete the
method from the original class and revise the method call(s) to reference the new class.

lnTotalPrice = lnBasePrice * (1.00 + lnMarkupPercent/100)
loMath = NEWOBJECT("ArithmeticFunctions") && If not already instantiated
lnFinalPrice = loMath.TruncateFractionalCents(lnTotalPrice)

DEFINE CLASS ArithmeticFunctions as Custom
Function TruncateFractionalCents(tnValue as Number) as Number
Return tnValue – mod(tnValue, .01)
ENDDEFINE

The benefit of this design change is that the TruncateFractionalCents method is no longer
embedded in a class that also has all the methods and data required to work with invoices.
The method can now be used anywhere simply by instantiating the ArithmeticFunctions
class, which is presumably lighter weight because it does not have all the overhead of the
invoice handling class. This makes the TruncateFractionalCents method suitable for use in
places completely unrelated to handling invoices.

Extract Class

“You have one class doing work that should be done by two.
Create a new class and move the relevant fields and methods from the old class into the new
class.” [1]

The Extract Class refactoring is indicated when you realize a class has become overly
complex, unwieldy, or is simply doing too many things. It’s similar to Move Method but
involves splitting an entire class in two instead of moving only a single method.

Classes grow and evolve over time, with new methods and responsibilities being added as
the need arises. After a while a class can end up with methods that, while it may have been
convenient to include them at the time, can now be seen as not closely related to the class’s
original purpose. When this happens, the design can be improved by extracting the
methods that don’t belong in the original class and putting them into a new class of their
own.

As an example, consider a class whose basic purpose is to handle all things related to an
invoice, such as calculating line item amounts, applying discounts, calculating the invoice
total, and printing the invoice. When that class was originally written, invoices were always
printed to paper – there were no other types of output. As time went by, methods were

Refactoring VFP Apps

Copyright 2014, Rick Borup Page 11 of 39

added to print the invoice to a PDF file instead of directly to paper, and then later to render
it in HTML format suitable for emailing to the customer.

At first, the PDF and HTML methods were probably tacked on to the original invoice class,
where they worked fine and caused no problems except that the class began to bloat. But
now, when viewing the class with refactoring in mind, it becomes clear that the printing to
paper, creating a PDF file, and rendering as HTML are each ways of generating report
output and have nothing to do with invoices per se. Therefore, these three methods
probably belong in a new class by themselves and Extract Class can be applied to
accomplish this.

Remove Parameter

“A parameter is no longer used by the method body.
Remove it”. [1]

Not much needs to be said here – this is about as simple as it gets. There is, as you might
expect, a companion refactoring called Add Parameter. You’ve doubtless done both a
hundred times and never thought about them as formal refactorings.

A design can be improved by one or the other of these techniques if the result reduces
complexity or eliminates redundancy elsewhere in the code. Implementation is easy but
requires a walk through the entire application because the method’s signature is changed.
It may also be necessary to add validation code when a new parameter is added.

Setter and Getter Methods

A setter method is a method whose purpose is to set the value of a class property.
Conversely, a getter method is a method whose purpose is to return the value of a class
property.

Setter and getter methods uncouple the name of a class property from its outside
references. A property’s name can therefore be changed without affecting anything outside
of the class itself.

Some languages and some approaches to class design make extensive use of setter and
getter methods, while others do not. In Visual FoxPro, setter and getter methods are
optional. Unless defined as protected or hidden, a VFP class property’s value can be written
or retrieved by direct reference anywhere in the code. This has both advantages and
disadvantages. The advantage is that the developer is free to reference the property
wherever desired. The disadvantage is that there’s no control over who can access the
property’s value, much less over what range of values or even what type of value can be
assigned to it.

A getter method can be used to restrict access to a class property in some way, for example
by checking user permissions. If a class property is defined as protected, a getter method is
the only way to access the property’s value from outside the class or one of its subclasses. If

Refactoring VFP Apps

Copyright 2014, Rick Borup Page 12 of 39

the property is defined as hidden, a getter method is the only way to access the property’s
value from anywhere outside the class.

A setter method is commonly used to control changes to the value of a property. As with
getter methods, this could include checking user permissions, but setter methods can also
be used to ensure that a valid data type and/or range of values is satisfied before allowing a
property’s value to be changed.

The name of setter and getter methods typically includes the word SET or GET along with
the name of the property. For example, given a class with a character data-type property
called cDataPath, the corresponding setter and getter methods might look like this:

Procedure SetDataPath(tcDataPath as String) as Void
If Vartype(tcDataPath) = “C”
 This.cDataPath = tcDataPath
Endif

Procedure GetDataPath() as String
Return this.cDataPath

In this example, the SetDataPath method protects the integrity of the cDataPath property
by ensuring it can be assigned only character values. The GetDathPath method, on the
other hand, is a pure getter that does nothing except return the value of cDataPath. In both
cases, as long as the methods themselves are not defined as protected or hidden, they can
be called from anywhere and work as expected even if the cDataPath property itself is
protected or hidden.

VFP’s native Access and Assign methods are a special form of getter and setter. You don’t
have to use them, but if you do, keep in mind they cannot be referenced outside of the class.

Adding setter and getter methods to a class constitutes a refactoring because it enhances
and/or restricts the way the class’s properties can be referenced, which might in turn
require changes in the code that references them. Some developers may swear by the use
of setter and getter methods while other developers spurn them as extraneous. Either way,
as with many things in VFP, the choice is yours.

When to refactor
Knowing when to refactor is as important as knowing how to refactor. The short answer is,
“Now!”.

In Refactoring, Fowler introduces the analogy of developers wearing two hats, one while
writing new code and the other while refactoring existing code. Rather than wearing the
developer hat for a long period of time and then changing to the refactoring hat, he
suggests it’s better to switch hats frequently, perhaps even multiple times per day. In other
words, don’t wait too long to refactor: write some new code, get it working, and then look
for opportunities to refactor it almost immediately.

Refactoring VFP Apps

Copyright 2014, Rick Borup Page 13 of 39

Others have commented on when to refactor, too. Ron Jeffries recently published an article
on XProgramming.com [6] about the benefits of refactoring as you go along. It’s a quick
read, illustrated with some fun graphics. He talks about how to avoid the need for a huge
refactoring job by “… [improving] the code where we work, and [ignoring] the code where
we don’t have to work.” Using the analogy of weeds and bushes to represent problem areas
in code, he writes “We take the next feature that we are asked to build, and instead of
detouring around all the weeds and bushes, we take the time to clear a path through some
of them.” The benefit is that “With each new feature, we clean the code needed by that
feature.” Thus, refactoring is driven by change and accomplished in manageable chunks.

Both authors are saying essentially the same thing: “Don’t wait to refactor.” Do it as soon as
you can, do it in small bites, and do it when the code is fresh in your mind. It’s much easier
to manage a dozen small refactorings over time than to wait until you have to tackle one big
refactoring later on.

Jeff Atwood published a blog post in 2004 entitled “Don’t be afraid to break stuff!” [7].
Although written in more general terms, his advice pertains directly to the challenges of
refactoring. Face it: when you refactor you change code, and when you change code you’re
likely to break something. Jeff’s point is that breaking stuff is a good way to figure out how
it works. So go ahead and tackle that refactoring job. See what breaks, then fix it. You’ll
learn a lot in the process.

When not to refactor
Not all refactoring results in program improvement. In his Ph.D. thesis on refactoring,
William Opdyke points out that “applying arbitrary refactorings to a program is more likely
to corrupt the design rather than to improve it…” [2].

The important question is, when is it appropriate to refactor and when is it not? There’s no
one answer – what’s right in one situation may be wrong in another, and vice-versa. The
decision ultimately rests with the developer, but Opdyke provides this guiding principle: “A
refactoring improves design if the resultant code units correspond to meaningful
abstractions that make it easier to refine or extend the program. ” [2]

Opdyke’s thesis focuses on frameworks and therefore deals largely with abstractions, but
not all refactorings are intended to create abstractions. Some are intended to create
specialization by removing specific behavior from a higher-level class and encapsulating it
in a lower-level class where it’s easier to reuse.

In both cases, however, the same question should be asked: does the proposed refactoring
improve the structure of the program, or does it unnecessarily complicate or obfuscate it?
Again, the question can only be answered by the designer/developer in the context of the
situation at hand.

Refactoring VFP Apps

Copyright 2014, Rick Borup Page 14 of 39

Examples of refactoring in VFP

The First Example

The first example illustrates how a bad smell can develop in a piece of code over time, and
how refactoring can help get rid of it. The code in this example resides in a method named
GetPurchaseOrders on a form named frmTimer. A timer on that form fires the method at
data-driven intervals to download and process incoming purchase order files from various
customers via FTP. Each customer has its own unique IT system, so while the overall
process of downloading and processing order files is essentially the same for all customers,
the details – the address of the customer’s FTP server, the type of FTP connection required,
and the name, file type, and data content of the orders to be downloaded – are different for
each customer. The application therefore has a separate business class to handle the
specific requirements for each customer.

Listing 1 is the initial version of the GetPurchaseOrders method. At this point there was
only one customer, Alpha Corp., but the developer used a CASE statement in anticipation of
other customers being added later. The method:

 Stops the timer

 Sets a visible status indicator to show which company is being processed

 Instantiates the appropriate business class and call its GetIncomingFiles method

 Resets the visible status indicator to “Waiting”

 Restarts the timer

Listing 1 – The original code handles only one customer, Alpha Corp.

* frmTimer.GetPurchaseOrders()
LPARAMETERS tcCompany
thisform.StopTimer()
DO CASE
 CASE UPPER(tcCompany) = "ALPHACORP"
 thisform.SetStatus("Processing", "Getting purchase orders for Alpha Corp")
 loAlphaCorp = NEWOBJECT("AlphaCorp", "clsAlphaCorp.prg")
 loAlphaCorp.GetIncomingFiles()
 OTHERWISE
 * Other companies may be added later
ENDCASE
thisform.SetStatus("Waiting")
thisform.StartTimer()

This code isn’t too bad. It’s constructed as a stand-alone method on the form instead of
residing in the event code of the control that runs it, and it delegates the details of the
downloading and processing the incoming files to a method on a separate business class.

When the user of this application lands a contract with a second customer, Beta Corp., the
code is easily extensible. The developer follows the original design concept and simply
adds another leg to the CASE statement.

Refactoring VFP Apps

Copyright 2014, Rick Borup Page 15 of 39

This works fine, but the seeds of a bad code smell are already planted: there’s a clear
duplication of code, the only difference being which business class gets instantiated. In
addition, unique object names are used when a generic name would suffice. Listing 2 shows
the code after adding the second customer – changes are indicated in green.

Listing 2 – The code after adding a second customer

* frmTimer.GetPurchaseOrders()
LPARAMETERS tcCompany
thisform.StopTimer()
DO CASE
 CASE UPPER(tcCompany) = "ALPHACORP"
 thisform.SetStatus("Processing", "Getting purchase orders for Alpha Corp")
 loAlphaCorp = NEWOBJECT("AlphaCorp", "clsAlphaCorp.prg")
 loAlphaCorp.GetIncomingFiles()
 CASE UPPER(tcCompany) = "BETACORP"
 thisform.SetStatus("Processing", "Getting purchase orders for Beta Corp")
 loBetaCorp = NEWOBJECT("BetaCorp", "clsBetaCorp.prg")
 loBetaCorp.GetIncomingFiles()
 OTHERWISE
 * Other companies may be added later
ENDCASE
thisform.SetStatus("Waiting")
thisform.StartTimer()

When the third customer, Gamma Corp., is added, this structure begins to look like it could
become cumbersome. Maybe a CASE statement wasn’t such a good idea after all. Listing 3
shows the code after the existing structure was extended by adding a third leg to the CASE
statement.

Listing 3 – The code after adding a third company

* frmTimer.GetPurchaseOrders()
LPARAMETERS tcCompany
thisform.StopTimer()
DO CASE
 CASE UPPER(tcCompany) = "ALPHACORP"
 thisform.SetStatus("Processing", "Getting purchase orders for Alpha Corp")
 loAlphaCorp = NEWOBJECT("AlphaCorp", "clsAlphaCorp.prg")
 loAlphaCorp.GetIncomingFiles()
 CASE UPPER(tcCompany) = "BETACORP"
 thisform.SetStatus("Processing", "Getting purchase orders for Beta Corp")
 loBetaCorp = NEWOBJECT("BetaCorp", "clsBetaCorp.prg")
 loBetaCorp.GetIncomingFiles()
 CASE UPPER(tcCompany) = "GAMMACORP"
 thisform.SetStatus("Processing", "Getting purchase orders for Gamma Corp")
 loGammaCorp = NEWOBJECT("GammaCorp", "clsGammaCorp.prg")
 loGammaCorp.GetIncomingFiles()
 OTHERWISE
 * Other companies are not programmed yet
ENDCASE
thisform.SetStatus("Waiting")
thisform.StartTimer()

Refactoring VFP Apps

Copyright 2014, Rick Borup Page 16 of 39

Fowler’s Refactoring [1] introduces the “rule of threes”, which goes like this:

 The first time you do something, just do it.

 The second time you do something similar, you wince at the duplication but you do
the duplicate thing anyway.

 The third time you do something similar, you refactor.

The code in Listing 3 is a good example of the rule of threes. This code is beginning to smell
bad. The unnecessarily unique object names mean it won’t be easy to refactor, and the
same commands are duplicated in all three legs of the CASE statement with the only
difference being the business class that’s instantiated. It’s not hard to see how this
structure will become burdensome as more and more customers are added. It’s time to put
on our refactoring hat!

The first refactoring consists of two changes. The first change involves the call to the
SetStatus method, which is currently duplicated in each leg of the CASE statement. The
duplication can be eliminated by removing the individual calls from within the CASE
statement and replacing them with a single call up above. This is an example of the
Consolidate Duplicate Conditional Fragments technique. A parameter can now be used to
pass the name of the company to the SetStatus method.

The second change in this first refactoring is an example of Rename Variables, in which the
unnecessarily unique variable names in each leg of the CASE statement are replaced with
the single generic but descriptive object name loCompanyHandler. Listing 4 shows the code
after the first refactoring is complete.

Listing 4 – The first refactoring sets the stage for the next one.

* frmTimer.GetPurchaseOrders()
LPARAMETERS tcCompany
thisform.StopTimer()
thisform.SetStatus("Processing", "Getting purchase orders for " + ;
 ALLTRIM(tcCompany))
LOCAL loCompanyHandler as Object
DO CASE
 CASE UPPER(tcCompany) = "ALPHACORP"
 loCompanyHandler = NEWOBJECT("AlphaCorp", "clsAlphaCorp.prg")
 loCompanyHandler.GetIncomingFiles()
 CASE UPPER(tcCompany) = "BETACORP"
 loCompanyHandler = NEWOBJECT("BetaCorp", "clsBetaCorp.prg")
 loCompanyHandler.GetIncomingFiles()
 CASE UPPER(tcCompany) = "GAMMACORP"
 loCompanyHandler = NEWOBJECT("GammaCorp", "clsGammaCorp.prg")
 loCompanyHandler.GetIncomingFiles()
 OTHERWISE
 * Other companies are not programmed yet
ENDCASE
thisform.SetStatus("Waiting")
thisform.StartTimer()

Refactoring VFP Apps

Copyright 2014, Rick Borup Page 17 of 39

This code is better, but there’s still a lot of duplication and the CASE statement is still going
to grow a new leg every time another company is added.

The second refactoring invokes the Extract Method technique, which is one of the most
basic and frequently used. The CASE statement is extracted from the GetPurchaseOrders
method and converted to a new method named GetIncomingFiles. This refactoring also
applies Consolidate Duplicate Conditional Fragments to replace the three duplicate calls to
loCompanyHandler.GetIncomingFiles with a single one below the CASE statement.

Listing 5 – The second refactoring uses Extract Method to create a new method for the CASE statement.

* frmTimer.GetPurchaseOrders()
LPARAMETERS tcCompany
thisform.StopTimer()
thisform.SetStatus("Processing", "Getting purchase orders for " + ;
 ALLTRIM(tcCompany))
thisform.GetIncomingFiles(tcCompany)
thisform.SetStatus("Waiting")
thisform.StartTimer()

* frmTimer.GetIncomingFiles()
LPARAMETERS tcCompany
LOCAL loCompanyHandler as Object
DO CASE
 CASE UPPER(tcCompany) = "ALPHACORP"
 loCompanyHandler = NEWOBJECT("AlphaCorp", "clsAlphaCorp.prg")
 CASE UPPER(tcCompany) = "BETACORP"
 loCompanyHandler = NEWOBJECT("BetaCorp", "clsBetaCorp.prg")
 CASE UPPER(tcCompany) = "GAMMACORP"
 loCompanyHandler = NEWOBJECT("GammaCorp", "clsGammaCorp.prg")
 OTHERWISE
 * Other companies are not programmed yet
ENDCASE
loCompanyHandler.GetIncomingFiles()

The only thing this second refactoring has accomplished is to push the CASE statement
down into a new method of its own, but that’s still an important step in the right direction.
The GetPurchaseOrders method on the form has now been shortened and simplified, and
the decision as to which business class to instantiate method has been delegated to the new
GetIncomingFiles method. So far this may look like a meaningless change, but it sets the
stage for the final refactoring.

The third and final refactoring in this example gets rid of the CASE statement in the form’s
GetIncomingFiles method and replaces it with a call to a factory object. (You knew your
knowledge of design patterns would pay off at some point, didn’t you?) This reduces the
form’s GetIncomingFiles method to its essentials, and facilitates the addition of more
companies by simply adding them to the factory class. Because the factory object could
conceivably be needed elsewhere in the application, it’s designed as a new class of its own.
This is an example of the Extract Class refactoring technique.

Refactoring VFP Apps

Copyright 2014, Rick Borup Page 18 of 39

Listing 6 – The final refactoring

* frmTimer.GetPurchaseOrders()
LPARAMETERS tcCompany
thisform.StopTimer()
thisform.SetStatus("Processing", "Getting purchase orders for " + ;
 ALLTRIM(tcCompany))
thisform.GetIncomingFiles(tcCompany)
thisform.SetStatus("Waiting")
thisform.StartTimer()

* frmTimer.GetIncomingFiles
LPARAMETERS tcCompany
LOCAL loCompanyHandler as Object, loFactory as Object
loFactory = NEWOBJECT("CompanyHandler")
loCompanyHandler = loFactory.CreateCompanyHandler(tcCompany)
loCompanyHandler.GetIncomingFiles()

* Simple Factory Class

DEFINE CLASS CompanyHandler as Custom
FUNCTION CreateCompanyHandler(tcName)
LOCAL lcName
lcName = UPPER(ALLTRIM(tcName))
RETURN ICASE(tcName = "ALPHACORP", NEWOBJECT("AlphaCorp", "clsAlphaCorp.prg"), ;
 tcName = "BETACORP", NEWOBJECT("BetaCorp", "clsBetaCorp.prg"), ;
 tcName = "GAMMACORP", NEWOBJECT("GammaCorp", "clsGammaCorp.prg"), ;
 null)
ENDFUNC
ENDDEFINE

After this refactoring, the code that resides in the form itself has been simplified and
abstracted to the point that no changes are required when a new company is added.
Additions can now be made by adding a single line to the factory class. Also, the factory
method can use the leaner ICASE statement in place of a full CASE statement structure.

What makes this the final refactoring? Without meaning to be glib, it’s because this is
where I decided to stop. Remember, refactoring changes are internal – the end user sees no
difference, so the developer gets to define what “done” looks like.

The Second Example

The second example of refactoring begins with a method whose purpose is at first
unknown to the developer assigned to work on it. The name of the method suggests it has
something to do with a unit price, whatever that is, but it’s difficult for the developer to
figure out what the code actually does just by reading it, in part because the variable names
are meaningless. I’ve made them artificially so for the sake of the example, but most
developers have probably seen code similar to this in real life.

Refactoring VFP Apps

Copyright 2014, Rick Borup Page 19 of 39

Listing 7 – It’s difficult to figure out what this code does because variable names are meaningless.

FUNCTION UnitPrice(a, b, c, d, e, f, g, h)
LOCAL ln1, ln2, ln3, ln4
STORE 0.00 TO ln1, ln2, ln3, ln4
DO CASE
 CASE d = "01"
 ln4 = c
 CASE e = "WEIGHT"
 ln4 = b * c
 OTHERWISE
 ln4 = b
ENDCASE
DO CASE
 CASE h = 1
 ln1 = ROUND(((a + g) / ln4), 3)
 ln1 = ln1 - MOD(ln1, .01)
 CASE h = 2
 ln1 = ROUND(((a + g)/ ln4), 2)
 OTHERWISE
 ln1 = ROUND(((a + g) / ln4), 3)
 ln3 = (ln1 * 100) - INT(ln1 * 100)
 IF ln3 > 0
 ln1 = ln1 + .005
 ENDIF
 ln1 = ROUND(ln1, 2)
ENDCASE
RETURN ln1
ENDFUNC && UnitPrice

A good first step toward understanding what this method does is to figure out what each
variable represents and then to give it a meaningful name. After researching how this
method is used in the application, the developer sees that it calculates a unit price – in
other words, the price of a single item – based on certain variables including the price of a
full case of those same items. For example, if the thing in question is a case of 24 bottles of
cola, this method calculates the price of a single bottle if one can be sold separately.

Once the developer understands this, she decides a good first step is to apply the Rename
Method refactoring by adding a verb to the method name. Naming it CalculateUnitPrice
instead of just UnitPrice helps make its purpose clear to anyone reading it.

After inspecting the calling code more thoroughly and seeing what data is being passed to it
in each of the parameters, the developer determines that the first parameter is the price of
a case, the second through the seventh are other factors affecting the calculation, and the
last parameter specifies one of three types of rounding. Knowing this, she can apply
Rename Variables to give the parameters meaningful names. This improves readability both
for herself and for other developers who may follow, as shown in Listing 8.

Listing 8 – The method has been renamed and the parameters now have meaningful names.

FUNCTION CalculateUnitPrice(tnCasePrice, tnCount, tnSize, tcCategory, ;
 tcUnitType, tcSpecial, tnUnitChrg, tnRoundingMethod)

Refactoring VFP Apps

Copyright 2014, Rick Borup Page 20 of 39

LOCAL ln1, ln2, ln3, ln4
STORE 0.00 TO ln1, ln2, ln3, ln4
DO CASE
 CASE tcCategory = "01"
 ln4 = tnSize
 CASE tcUnitType = "WEIGHT"
 ln4 = tnCount * tnSize
 OTHERWISE
 ln4 = tnCount
ENDCASE
DO CASE
 CASE tnRoundingMethod = 1
 ln1 = ROUND(((tnCasePrice + tnUnitChrg) / ln4), 3)
 ln1 = ln1 - MOD(ln1, .01)
 CASE tnRoundingMethod = 2
 ln1 = ROUND(((tnCasePrice + tnUnitChrg) / ln4), 2)
 OTHERWISE
 ln1 = ROUND(((tnCasePrice + tnUnitChrg) / ln4), 3)
 ln3 = (ln1 * 100) - INT(ln1 * 100)
 IF ln3 > 0
 ln1 = ln1 + .005
 ENDIF
 ln1 = ROUND(ln1, 2)
ENDCASE
RETURN ln1
ENDFUNC && CalculateUnitPrice

The name of the local memory variable names are still cryptic, so the next step is to apply
Rename Variables to them as well. While she’s at it, the developer also figures out the
difference between the three rounding techniques. The difference isn’t immediately
apparent from the code, so she adds a comment for each one. These comments increase
readability and will also become useful in a later refactoring.

Listing 9 – The local memory variables now have meaningful names, too.

FUNCTION CalculateUnitPrice(tnCasePrice, tnCount, tnSize, tcCategory, ;
 tcUnitType, tcSpecial, tnUnitChrg, tnRoundingMethod)
LOCAL lnPrice, lnCents, lnTenths, lnDivisor
STORE 0.00 TO lnPrice, lnCents, lnTenths, lnDivisor
DO CASE
 CASE tcCategory = "01"
 lnDivisor = tnSize
 CASE tcUnitType = "WEIGHT"
 lnDivisor = tnCount * tnSize
 OTHERWISE
 lnDivisor = tnCount
ENDCASE
DO CASE
 CASE tnRoundingMethod = 1 && truncate
 lnPrice = ROUND(((tnCasePrice + tnUnitChrg) / lnDivisor), 3)
 lnPrice = lnPrice - MOD(lnPrice, .01)
 CASE tnRoundingMethod = 2 && normal rounding
 lnPrice = ROUND(((tnCasePrice + tnUnitChrg) / lnDivisor), 2)
 OTHERWISE && round up

Refactoring VFP Apps

Copyright 2014, Rick Borup Page 21 of 39

 lnPrice = ROUND(((tnCasePrice + tnUnitChrg) / lnDivisor), 3)
 lnTenths = (lnPrice * 100) - INT(lnPrice * 100)
 IF lnTenths > 0
 lnPrice = lnPrice + .005
 ENDIF
 lnPrice = ROUND(lnPrice, 2)
ENDCASE
RETURN lnPrice
ENDFUNC && CalculateUnitPrice

The method now makes pretty good sense to someone reading it, but it still has some
issues. The developer notices that the local memory variable lnCents is never used, so she
simplifies the code by getting rid of it. Removing of a local memory variable doesn’t affect
anything else, so this is an easy change.

The developer also observes that the tcSpecial parameter is not used anywhere in the
method code, which suggests the Remove Parameter refactoring can be used to get rid of it.
Of course, removing a parameter changes the method’s signature and potentially breaks all
the calling code, so the developer has a decision to make: is it better to leave the unused
parameter in place, with the only penalty being some potential confusion as to why it’s
there, or is it worth the effort to remove it and then to locate and change all the calling
code? In the real world the answer may well depend on how many places the method is
called, or on how energetic the developer is feeling that day, but for purposes of this
example she decides to remove it.

Another source of potential confusion is that the name of the local memory variable lnPrice
isn’t very descriptive. It would be more accurate to name it lnUnitPrice, because that name
better describes the data it holds, so she does that too.

Looking at the two inline CASE statements, the developer can see that the first one sets the
value of a divisor that’s used to calculate the unit price, while the second one applies one of
three rounding methods to a numeric value. Both of these appear to be somewhat generic
functions that could conceivably be needed elsewhere in the application. She knows the
main problem with inline code like this is that it's not reusable because it can't be called
from anywhere else in the application.

The developer applies Extract Method to pull both of these CASE statements out of their
inline location and to convert each into its own method, named CalculateUnitPriceDivisor
and CalculateRoundedUnitPrice respectively. There are two advantages to this. One is that
these calculations can be utilized anywhere else in the application, and the other is that by
giving the new methods meaningful names, their purpose is clear wherever the method is
referenced.

Listing 10 – The two CASE statements are extracted out of the original method and converted into methods of
their own.

FUNCTION CalculateUnitPrice(tnCasePrice, tnCount, tnSize, tcCategory, ;
 tcUnitType, tnUnitChrg, tnRoundingMethod)
LOCAL lnUnitPrice, lnDivisor

Refactoring VFP Apps

Copyright 2014, Rick Borup Page 22 of 39

STORE 0.00 TO lnUnitPrice, lnCents, lnTenths, lnDivisor
lnDivisor = CalculateUnitPriceDivisor(tcCategory, tcUnitType, tnCount, tnSize)
lnUnitPrice = CalculateRoundedUnitPrice(tnCasePrice, tnUnitChrg, lnDivisor, ;
 tnRoundingMethod)
RETURN lnUnitPrice
ENDFUNC && CalculateUnitPrice

FUNCTION CalculateUnitPriceDivisor(tcCategory, tcUnitType, tnCount, tnSize)
LOCAL lnDivisor
DO CASE
 CASE tcCategory = "01"
 lnDivisor = tnSize
 CASE tcUnitType = "WEIGHT"
 lnDivisor = tnCount * tnSize
 OTHERWISE
 lnDivisor = tnCount
ENDCASE
RETURN lnDivisor
ENDFUNC && CalculateUnitPriceDivisor

FUNCTION CalculateRoundedUnitPrice(tnCasePrice, tnUnitChrg, tnDivisor, ;
 tnRoundingMethod)
LOCAL lnTenths
STORE 0.00 TO lnTenths
DO CASE
 CASE tnRoundingMethod = 1 && truncate
 lnUnitPrice = ROUND(((tnCasePrice + tnUnitChrg) / lnDivisor), 3)
 lnUnitPrice = lnUnitPrice - MOD(lnUnitPrice, .01)
 CASE tnRoundingMethod = 2 && normal rounding
 lnUnitPrice = ROUND(((tnCasePrice + tnUnitChrg)/ lnDivisor), 2)
 OTHERWISE && round up
 lnUnitPrice = ROUND(((tnCasePrice + tnUnitChrg) / lnDivisor), 3)
 lnTenths = (lnUnitPrice * 100) - INT(lnUnitPrice * 100)
 IF lnTenths > 0
 lnUnitPrice = lnUnitPrice + .005
 ENDIF
 lnUnitPrice = ROUND(lnUnitPrice, 2)
ENDCASE
RETURN lnUnitPrice
ENDFUNC && CalculateRoundedUnitPrice

Focusing on the new CalculateRoundedUnitPrice method, the developer sees that it actually
performs two separate functions: it calculates the unit price based on the parameter values,
and then rounds the result using one of three rounding methods. She also notices there’s
some duplication in the initial calculation of lnUnitPrice, where the first line of the CASE
statement is essentially the same in all three legs. She therefore decides at least two more
refactorings can be applied to further improve this code.

The calculation of the initial value of lnUnitPrice, currently duplicated in each leg of the
CASE statement in the CalculateRoundedUnitPrice method, can be pulled out and replaced
with a single calculation up in the CalculateUnitPrice method, where it’s always rounded to
three decimal positions. The remaining code in the CalculateRoundedUnitPrice method is
now generic for rounding any numeric value in one of three ways, so the developer

Refactoring VFP Apps

Copyright 2014, Rick Borup Page 23 of 39

renames that method to be GetRoundedValue. The CalculateUnitPrice method can now
pass the initial three-decimal value of lnUnitPrice to the new GetRoundedValue method to
obtain the final price based on the desired rounding method.

Listing 11 – The initial calculation on lnUnitPrice has been moved up to the CalculateUnitPrice method, whose
value is then passed to the generic GetRoundedValue method.

FUNCTION CalculateUnitPrice(tnCasePrice, tnCount, tnSize, tcCategory, ;
 tcUnitType, tnUnitChrg, tnRoundingMethod)
LOCAL lnUnitPrice, lnDivisor
STORE 0.00 TO lnUnitPrice, lnCents, lnTenths, lnDivisor
lnDivisor = CalculateUnitPriceDivisor(tcCategory, tcUnitType, tnCount, tnSize)
lnUnitPrice = ROUND(((tnCasePrice + tnUnitChrg) / lnDivisor), 3)
lnUnitPrice = GetRoundedValue(lnUnitPrice, tnRoundingMethod)
RETURN lnUnitPrice
ENDFUNC && CalculateUnitPrice

FUNCTION CalculateUnitPriceDivisor(tcCategory, tcUnitType, tnCount, tnSize)
LOCAL lnDivisor
DO CASE
 CASE tcCategory = "01"
 lnDivisor = tnSize
 CASE tcUnitType = "WEIGHT"
 lnDivisor = tnCount * tnSize
 OTHERWISE
 lnDivisor = tnCount
ENDCASE
RETURN lnDivisor
ENDFUNC && CalculateUnitPriceDivisor

FUNCTION GetRoundedValue(tnValue, tnRoundingMethod)
LOCAL lnTenths, lnRoundedValue
STORE 0.00 TO lnTenths, lnRoundedValue
DO CASE
 CASE tnRoundingMethod = 1 && truncate
 lnRoundedValue = tnValue - MOD(tnValue, .01)
 CASE tnRoundingMethod = 2 && normal rounding
 lnRoundedValue = ROUND(tnValue, 2)
 OTHERWISE && round up
 lnTenths = (tnValue * 100) - INT(tnValue * 100)
 IF lnTenths > 0
 tnValue = tnValue + .005
 ENDIF
 lnRoundedValue = ROUND(tnValue, 2)
ENDCASE
RETURN lnRoundedValue
ENDFUNC && GetRoundedValue

As in the previous example, the GetRoundedValue method can now be easily moved to a
different class if there is a more appropriate place for it.

Compare the refactored code in Listing 11 to the original code in Listing 7. Overall, the
code is now much easier to read and understand. The CalculateUnitPrice method has a

Refactoring VFP Apps

Copyright 2014, Rick Borup Page 24 of 39

name that describes its purpose, and its parameters and local variables have names that
describe the data they represent. The method also contains far less code than the original,
because some of the calculations on which it depends have been extracted into separate
methods that can also be referenced elsewhere in the application. Not only is the resulting
code much easier to read and understand, it’s also much easier to debug and change.

These two examples have focused on only a select few refactoring techniques. Much of
refactoring involves not only making improvements to the code itself, but also making
higher level decisions about how many classes there should be and which methods belong
in which classes. If you use an application framework, many of these decisions have
probably been made for you by the framework authors. The goal of refactoring is always
the same, though – to improve the structure and readability of existing code in order to
facilitate change.

Risks of refactoring
The primary risk of refactoring is the risk of breaking something that wasn’t broken. As the
old saying goes, “If it ain’t broke, don’t fix it!”

There are real risks involved in making any changes to working code, so the decision to
refactor shouldn’t be taken lightly. On the other hand, there are real benefits to be gained
by refactoring working code, even code that’s in pretty good shape to begin with.

Deciding if and when to refactor requires weighing the risks of breaking something against
the potential benefits of improving it. The risk/reward ratio can be different in each
situation, so it’s a decision the developer or development team must make every time.
Although there are guidelines, there is no hard and fast rule to determine when refactoring
is required or even when it’s beneficial.

Another risk of refactoring is the invasive creep of what I call the “Where the heck did I put
that??” syndrome. This happens when the extract class, extract method, and other types of
refactorings are overdone, resulting in a proliferation of new classes and subclasses to the
extent that it becomes difficult to remember where a method is defined or where a piece of
data resides. One goal of refactoring is to improve clarity and reveal meaning, but too much
refactoring can obfuscate it. It’s therefore important to know when to stop, or even when to
just leave well enough alone in the first place.

Unit testing
The purpose of unit testing is to ensure nothing gets broken when changes are made to
working code. It’s the primary tool for mitigating the risks of refactoring, thereby shifting
the balance toward the reward side of the risk/reward equation.

Doug Henning and others have written extensively about unit testing in VFP, so I’m not
going to go into it in detail here. The most recent works are Doug’s white paper from
Southwest Fox 2013, Unit Testing VFP Applications [3], and his three-part series of the same

Refactoring VFP Apps

Copyright 2014, Rick Borup Page 25 of 39

name in the January, March, and May, 2014, issues of FoxRockX [4]. A video version of
Doug’s presentation is also available in the Online FoxPro Users Group (OFUG) archives [5].

By definition, refactoring involves changing the structure of code without changing its
behavior. During and after refactoring, testing is needed to ensure that the refactored code
exhibits the same behavior as the original code – in other words, to ensure that the
refactoring didn’t break anything. It goes without saying that refactoring should therefore
be done only on code that passes all tests before modification.

You don’t need a special-purpose tool to create unit tests, although a tool can be helpful if
you’re willing to invest the time to learn it. For VFP developers, the tool of choice is
FoxUnit, which Doug covers in depth in the resources referenced above.

On the other hand, you can certainly write your own unit tests without a special-purpose
tool. One way is to create a Test method for each method in a class and to incorporate the
test method into the same class as the method itself. So for example, a class with a method
named DoSomething might have a companion test method named DoSomething_Test.

One advantage of embedded test methods is that the test has access to all of the same
runtime data available to the method being tested. This is useful if the method being tested
takes parameters or accesses data whose values come from sources supplied at runtime.
The #IFDEF preprocessor directive, along with an appropriate defined constant, can be
used to include the test methods when compiling for development but exclude them when
compiling for deployment.

In other situations it may make more sense to write the test code in external programs or
class libraries. For that matter, although tests should certainly be written, they do not
always need to be automated. Sometimes it’s enough simply to write down a series of steps
to be followed manually.

TDD purists would probably assert that unit testing per se is integral to the refactoring
process. I take a little more relaxed view – testing is essential, but it’s not necessary to
create and run unit tests on every single method. Any type of test that ensures the
refactored code exhibits the same behavior as the original code will do. If the code modifies
data in a database, as most VFP applications do, comparing “before” and “after” snapshots
of the affected data tables can be an effective way to ensure the refactored code produces
the same result as the original for each set of inputs.

Tools for refactoring in VFP
Refactoring tools fall into two basic categories. Code inspection tools, sometimes called
refactoring browsers, are designed to help locate and identify sections of code that may be
candidates for refactoring, while automated refactoring tools actually change the code by
applying one or more refactorings. Some products, such as ReSharper for Visual Studio, do
all of this and more.

Refactoring VFP Apps

Copyright 2014, Rick Borup Page 26 of 39

Visual FoxPro developers may not have access to all the tools available to developers
working in other environments, but there are still several tools to help VFP developers with
refactoring.

Basic search and replace

Many refactorings require the developer to search through code to find places where the
refactored code is referenced, and then to make the appropriate changes. Common
examples are when a variable or a method is renamed or when a method’s signature is
changed. In those situations, all of the existing references to those variables or methods
must be located and changed throughout the entire program, class, or application.

VFP’s native Find dialog is the basic tool when the scope of the search is a single program
file, form, or class library. Along with the companion Replace dialog, this tool is often all
that’s needed to complete a refactoring when the scope of its effects is limited.

When a refactoring potentially affects several classes and program files throughout an
entire VFP project, the next step up is the built-in Code References tool . This tool enables
searching for and optionally replacing character strings within an entire project or folder.
Like the Find and Replace dialogs, the Code References tool can search and replace within
VFP binary files.

Matt Slay’s GoFish 4 is an enhanced search tool for VFP. Like the Code References tool, it
can search within VFP’s binary files as well as text files, but it features many more filters
and options than the Code References tool. GoFish 4 is available for download on VFPX.

There are several third-party search and replace tools outside of the VFP-specific ones.
Search and Replace and its successor, Replace Studio Professional, both from Funduc
Software, are known for their speed. Both products enable you to specify a search string, an
optional replacement string, the path to be searched, and a filter for the desired file
extensions in that path. Although not suited for working with VFP’s binary files, they are
nonetheless useful for quickly searching for and optionally replacing character strings in
folders containing VFP text files such as .prg and .h. They’re also extremely well suited for
working with Web applications involving HTML, CSS, and other text-based files.

Advanced navigation

Advanced navigation tools make it easy to jump to the places in an application where a
variable or method is defined or referenced. While most VFP developers are probably
familiar with the Code References tool and how to launch it from the Tools menu, it may be
less well known that it can be launched directly from the code editor via the context menu.
The code editor’s context menu also has a companion View Definition item. Both of these
work best within the scope of an actively open project in the VFP IDE.

To illustrate the use of these two navigation aids, suppose there is a project with three code
files, main.prg, clsOne.prg, and clsTwo.prg. Both clsOne.prg and clsTwo.prg have a method
named DoSomething. The main program instantiates both classes and calls their
DoSomething method. Listing 12 shows these three program files.

Refactoring VFP Apps

Copyright 2014, Rick Borup Page 27 of 39

Listing 12. The sample project has three files.

* Main.prg
LOCAL loOne as Object, ;
 loTwo as Object
loOne = NEWOBJECT(“clsOne”, “clsOne.prg”)
loOne.DoSomething()
loTwo = NEWOBJECT(“clsTwo”, “clsTwo.prg”)
loTwo.DoSomething()

* clsOne.prg
DEFINE CLASS clsOne as custom
cName = “One”
PROCEDURE DoSomething()
* something
ENDPROC
ENDDEFINE

* clsTwo.prg
DEFINE CLASS clsTwo as custom
cName = “Two”
PROCEDURE DoSomething()
* something
ENDPROC
ENDDEFINE

In this example it’s easy to see where all the references and definitions are because all the
code can be seen at once, but think about it in terms of a real application comprising dozens
of files with hundreds of lines each.

Look Up Reference

If the developer working on main.prg wants to locate and jump one of the places where the
DoSomething method is defined in this project, the conventional way is to:

 open the Code References tool from VFP’s Tools menu

 click the Search button to bring up the Look Up Reference dialog

 type in the string to search for

 click that dialog’s Search button to generate a list of the references

 locate the desired reference in the list

 double-click the reference to open its location in the code editor

A quicker way is to accomplish the first three steps is to select the desired text from a line
in the code editor, right-click to get the context menu, and then select Look Up Reference,
as shown in Figure 2. This opens the Look Up Reference dialog with the highlighted text
automatically inserted as the search string.

Refactoring VFP Apps

Copyright 2014, Rick Borup Page 28 of 39

Figure 2. The Code Reference tool can be launched from the Look Up Reference item on the context menu.

From there, the remaining steps are the same as if the Code References tool had been
launched in the conventional manner.

View Definition

Sometimes the developer may want to jump directly to the definition of a code element
without having to wade through all the references to it. VFP provides a quick way to do
this, too. With the desired text selected in the editor, choose View Definition from the
context menu as show in Figure 3.

Refactoring VFP Apps

Copyright 2014, Rick Borup Page 29 of 39

Figure 3. Use View Definition on the context menu to jump to where an element is defined

If the selected element is defined in only one place, VFP opens the appropriate file and
selects that location for you. One of the cool features of this tool comes into play when the
selected element is defined in more than one place, as is true of the DoSomething method in
this example. When an element is defined in more than one place, VFP brings up the Go To
Definition dialog shown in Figure 4.

Figure 4. The Go To Definition dialog lists the places where the selected element is defined.

Refactoring VFP Apps

Copyright 2014, Rick Borup Page 30 of 39

The Go To Definition dialog lists the places where the selected element is defined. You can
then jump directly to the location of the desired definition by selecting it in the list and
clicking the Go To button.

In Figure 4, the definition of the DoSomething method in clsOne.prg is selected. When the
Go To button is clicked, VFP therefore opens clsOne.prg in the code editor and highlights
the location where its DoSomething method is defined, as shown in Figure 5. If the
definition in clsTwo.prg had been selected, then clsTwo.prg would have been opened.

Figure 5. After clicking the Go To button, the file containing the selected definition is opened and the
definition of the selected element is automatically highlighted.

The Go To Definition dialog is non-modal and remains open even after clicking the Go To
button. This enables you to open multiple files and view multiple definitions without
having to start over from View Definition on the context menu.

The Look Up Reference and View Definition shortcuts on the VFP code editor’s context
menu are useful tools when refactoring because they enable you to quickly and easily find
and jump to places in the code where changes may need to be made.

Code inspection

Code inspection tools enable developers to browse or search through code and identify
places that could benefit from refactoring. For Visual FoxPro developers, the only tool I’m
aware of is the Code Analyst tool on VFPX. This project is maintained by Andrew MacNeill.
It’s currently listed as being in release candidate status with the most recent build being
January, 2013.

The tool comes with an extensible set of rules defining conditions to be flagged as potential
problems or bad code smells, and which might be therefore be candidates for refactoring.
These rules can be viewed, selected, and edited in the Code Analyst Configuration dialog,
shown in Figure 6.

Refactoring VFP Apps

Copyright 2014, Rick Borup Page 31 of 39

Figure 6. The Code Analyst tool comes with an extensible set of rules, which can be seen in the Configuration
dialog.

The lower portion of the Configuration dialog shows the description of the selected rule
and the code used to implement it. Inspecting the code is a good way to learn how the tool
works.

When Code Analyst is launched, it prompts for the name of the VFP entity to be analyzed,
which can be a single program file, form, or visual class library, or an entire project. The
results obtained by running Code Analyst on the little project in Listing 12 are shown in
Figure 7.

Refactoring VFP Apps

Copyright 2014, Rick Borup Page 32 of 39

Figure 7. The Code Analyst results dialog features a tree view for easy navigation and inspection of the results
for each individual file.

I only recently began experimenting with Code Analyst, but I’ve used it enough to be
intrigued. For my own purposes I can already see that some of the rules would need to be
modified or ignored while new ones would probably need to be added, but the fact that the
rules are editable and extensible opens up a lot of possibilities.

Automated Refactoring

Automated refactoring tools go a step beyond code inspection tools and actually make
changes to your code. Their attraction is in their convenience, freeing the developer from
such tedious tasks as searching for and replacing all occurrences of a renamed variable or
method within a project, or having to manually copy and paste the code when extracting a
method or a class. Automated refactoring tools don’t do anything that can’t be done
manually, though, so although convenient they’re not essential.

Visual Studio developers have automated refactoring tools like ReSharper, but to my
knowledge there is no such tool for Visual FoxPro. I don’t see this a real disadvantage,
though. As Opdyke points out [2], there is always a human element to refactoring, so it can
never be fully automated.

Unit testing tools

FoxUnit is the de facto unit testing tool for VFP developers. Originally from VisionPace,
FoxUnit is now actively maintained on VFPX by Eric Selje. For more information about this
tool please refer to the VFPX website and the references mentioned in the Unit Testing
section earlier in this paper.

Refactoring VFP Apps

Copyright 2014, Rick Borup Page 33 of 39

Other tools

During refactoring I often make use of external text editors that can recognize VFP syntax.
My two favorites are TextPad and EditPlus. Both are generic text editors with free VFP
syntax add-ons supplied by the community. Neither of these editors can provide code
completion or other IntelliSense types of assistance, but when the appropriate VFP
language add-on is installed they do provide VFP syntax coloring as an aid to readability.

Figure 8 shows how the little main.prg program file from an earlier example looks in each
of these two editors. The default syntax coloring is different but useful in each.

Figure 8. With the appropriate VFP language add-ons installed, both TextPad and EditPlus provide syntax
coloring for VFP files.

I’m also a big fan of the venerable Beyond Compare from Scooter Software. In combination
with the external editors, these three tools make it easy to create and compare snapshots of
code segments before and after refactoring. This visual inspection helps confirm that only
the intended changes have been made. This is not a substitute for testing, but it is useful as

Refactoring VFP Apps

Copyright 2014, Rick Borup Page 34 of 39

one additional way to be sure everything looks good at various stages in the refactoring
process.

By way of example, consider the refactorings applied to the UnitPrice method in the second
VFP example earlier in this paper. To compare the code before and after refactoring, I first
copied it from the VFP editor in its original form, pasted it into a blank document in one of
the external text editors, and saved it as a VFP .prg file in a temporary folder. I then did the
same thing with the code after the first refactoring. Finally, I used Beyond Compare to
compare the two temporary files side by side so I could observe the differences, as shown
in Figure 9. This enabled me to easily confirm that I hadn’t made any unintended changes
to the code on the right.

Figure 9. Beyond Compare enables you to compare snapshots of a piece of code before refactoring (left side)
and after refactoring (right side) for visual confirmation that the changes are as expected.

Although I use both editors for lots of reasons, EditPlus has one slight advantage when
working with VFP files. In some cases, you may want to use the editor as a temporary
holding area where you can view a chunk of code with no intention of ever saving it as a
file. In EditPlus, you can specify a file type (VFP or other) when you first create a new
document, so you don’t have to save the file to get syntax coloring. TextPad doesn’t apply
syntax coloring until you save the file.

Links for both of these editors, along with those for other useful tools, can be found in the
Tools section at the end of this paper.

Refactoring VFP Apps

Copyright 2014, Rick Borup Page 35 of 39

Summary
Refactoring is the process of improving the internal structure of code without changing its
external behavior. Without refactoring, the structure of an application’s code can decay
over time as changes are made and new features added in ways not planned for nor well
supported by the original structure. Sometimes the structure of the code is not very good to
begin with. Either way, it’s difficult to make changes or add new features, and developers
end up spending more time working around problems than doing productive work.
Refactoring is a solution to these types of problems.

Biography
Rick Borup is owner and president of Information Technology Associates, LLC, a
professional software development, computer services, and information systems
consulting firm he founded in 1993. Rick earned BS and MBA degrees from the University
of Illinois and spent several years developing software applications for mainframe
computers before turning to PC database development tools in the late 1980s. He began
working with FoxPro in 1991, and has worked full time in FoxPro and Visual FoxPro since
1993. He is a co-author of the books Deploying Visual FoxPro Solutions and Visual FoxPro
Best Practices For The Next Ten Years. He has written articles for FoxTalk and FoxPro
Advisor, and is a frequent speaker at Visual FoxPro conferences and user groups. Rick is a
Microsoft Certified Solution Developer (MCSD) and a Microsoft Certified Professional
(MCP) in Visual FoxPro.

Copyright © 2014 Rick Borup. Windows® is a registered trademark of Microsoft Corporation
in the United States and other countries. All other trademarks are the property of their
respective owners

Refactoring VFP Apps

Copyright 2014, Rick Borup Page 36 of 39

Bibliography
[1] Martin Fowler, et al., Refactoring: Improving the Design of Existing Code, Addison Wesley
Longman, Inc., 1999

[2] William F. Opdyke, Refactoring Object-Oriented Frameworks, Thesis (Ph. D.), University
of Illinois at Urbana-Champaign, 1992

[3] Doug Hennig, Unit Testing VFP Applications, white paper for Southwest Fox 2013,
Gilbert, AZ, October, 2013

[4] Doug Hennig, Unit Testing VFP Applications, three-part series in FoxRockX, January,
March, and May, 2014 (subscription required)
 http://portaladmin.dfpug.de/dFPUG/Dokumente/FoxRockX/PDFIssues/

[5] Doug Hennig, Unit Testing VFP Applications, video presentation to the Online FoxPro
Users Group (OFUG), Dec. 17, 2013
 https://www.youtube.com/watch?v=J5PH1tKPYpI&feature=youtu.be

[6] Ron Jeffries, Refactoring – Not on the backlog!, XProgramming.com, July 29, 2014
 http://xprogramming.com/articles/refactoring-not-on-the-backlog/

[7] Jeff Atwood, Don’t be afraid to break stuff!, Coding Horror blog, Nov. 4, 2004
 http://blog.codinghorror.com/dont-be-afraid-to-break-stuff/

Other References
Nancy Folsom, Best Practices for Refactoring, white paper for Great Lakes Great Database
Workshop 2006, Milwaukee, WI, April, 2006, and also as Chapter 7 in Visual FoxPro Best
Practices for the Next Ten Years, Hentzenwerke Publishing, 2006

Andrew MacNeill, Visual FoxPro Refactoring Redux
http://www.aksel.com/whitepapers/refactoring.htm

FoxPro Wiki – Refactoring
http://fox.wikis.com/wc.dll?Wiki~Refactoring

Nancy Folsom, Refactoring: VFP form calls external PRG, uses Publics for shared data,
http://nancyfolsom.wordpress.com/2011/04/15/refactoring-vfp-form-calls-external-prg-
uses-publics-for-shared-data/

Andrew MacNeill, Profiling and Refactoring, Southwest Fox 2008

Doug Hennig, FoxUnit is Cool!
 http://doughennig.blogspot.com/2006/05/foxunit-is-cool.html

H. Alan Stevens, Test-Driven Development, Southwest Fox 2007

Ted Roche, Unit Testing in VFP
https://speakerdeck.com/tedroche/unit-testing-in-visual-foxpro-2001
(published Nov. 9, 2011)

http://portaladmin.dfpug.de/dFPUG/Dokumente/FoxRockX/PDFIssues/
https://www.youtube.com/watch?v=J5PH1tKPYpI&feature=youtu.be
http://xprogramming.com/articles/refactoring-not-on-the-backlog/
http://blog.codinghorror.com/dont-be-afraid-to-break-stuff/
http://www.aksel.com/whitepapers/refactoring.htm
http://fox.wikis.com/wc.dll?Wiki~Refactoring
http://nancyfolsom.wordpress.com/2011/04/15/refactoring-vfp-form-calls-external-prg-uses-publics-for-shared-data/
http://nancyfolsom.wordpress.com/2011/04/15/refactoring-vfp-form-calls-external-prg-uses-publics-for-shared-data/
http://doughennig.blogspot.com/2006/05/foxunit-is-cool.html
https://speakerdeck.com/tedroche/unit-testing-in-visual-foxpro-2001

Refactoring VFP Apps

Copyright 2014, Rick Borup Page 37 of 39

Andrew MacNeill, Using FoxUnit for Test-Driven Development in VFP
http://www.aksel.com/whitepapers/FoxUnit.htm

Tools
FoxUnit
http://vfpx.codeplex.com/wikipage?title=FoxUnit

VFPX – Code Analyst
vfpx.codeplex.com/wikipage?title=Code Analyst

GoFish 4
vfpx.codeplex.com/wikipage?title=GoFish

Search and Replace, and Replace Studio Professional
www.funduc.com

Beyond Compare
www.scootersoftware.com

EditPlus
www.editplus.com

TextPad
www.textpad.com

http://www.aksel.com/whitepapers/FoxUnit.htm
http://vfpx.codeplex.com/wikipage?title=FoxUnit
http://vfpx.codeplex.com/wikipage?title=Code%20Analyst
http://vfpx.codeplex.com/wikipage?title=GoFish
http://www.funduc.com/
http://www.scootersoftware.com/
http://www.editplus.com/
http://www.textpad.com/

Refactoring VFP Apps

Copyright 2014, Rick Borup Page 38 of 39

Appendix A
This appendix is an alphabetical list of selected refactorings I’ve used or referenced in this
paper, quoted directly from Fowler’s Refactoring book. The numbers in parentheses are the
page in Refactoring on which each of them is defined and explained.

Consolidate Duplicate Conditional Fragments (243)

The same fragment of code is in all branches of a conditional expression.

Move it outside of the expression.

Convert Procedural Design to Objects (368)

You have code written in a procedural style.

Turn the data records into objects, break up the behavior, and move the behavior to the
objects.

Decompose Conditional (238)

You have a complicated conditional (if – then – else) statement.

Extract methods from the condition, [the] then part, and [the] else part.

Extract Class (149)

You have one class doing work that should be done by two.

Create a new class and move the relevant fields and methods from the old class into the new
class

Extract Method (110)

You have a code fragment that can be grouped together.

Turn the fragment into a method whose name explains the purpose of the method.

Move Method (142)

A method is, or will be, using or used by more features of another class than the class on
which it is defined.

Create a new method with a similar body in the class it uses most. Either turn the old method
into a simple delegation, or remove it altogether.

Remove Parameter (277)

A parameter is no longer used by the method body.

Remove it.

Refactoring VFP Apps

Copyright 2014, Rick Borup Page 39 of 39

Rename Method (273)

The name of a method does not reveal its purpose.

Change the name of the method.

Replace Parameter with Method (292)

An object invokes a method, then passes the result as a parameter for a method. The
receiver can also invoke this method.

Remove the parameter and let the receiver invoke the method.

Separate Domain from Presentation (370)

You have GUI classes that contain domain logic.

Separate the domain logic into separate domain classes.

	Introduction
	What refactoring is
	Purpose of refactoring

	What refactoring isn’t
	Reasons to refactor
	Code Smells
	Duplicated Code
	Long Method
	Large Class
	Long Parameter List
	Switch Statements
	Chaining Parameters
	Passing local memory variables as parameters within a class

	VFP Code Smells
	Procedural Code
	Business logic in event methods

	Technical Debt
	Other Reasons to Refactor

	How to refactor
	Rename Variables
	Rename Method
	Extract Method
	Move Method
	Extract Class
	Remove Parameter
	Setter and Getter Methods

	When to refactor
	When not to refactor
	Examples of refactoring in VFP
	The First Example
	The Second Example

	Risks of refactoring
	Unit testing
	Tools for refactoring in VFP
	Basic search and replace
	Advanced navigation
	Look Up Reference
	View Definition

	Code inspection
	Automated Refactoring
	Unit testing tools
	Other tools

	Summary
	Biography
	Bibliography
	Other References
	Tools
	Appendix A
	Consolidate Duplicate Conditional Fragments (243)
	Convert Procedural Design to Objects (368)
	Decompose Conditional (238)
	Extract Class (149)
	Extract Method (110)
	Move Method (142)
	Remove Parameter (277)
	Rename Method (273)
	Replace Parameter with Method (292)
	Separate Domain from Presentation (370)

