This paper was originally presented at the Southwest Fox conference in Phoenix, Arizonain
October, 2005.

Roll Your Own
Windows Installer Setups

Rick Borup

Information Technology Associates
701 Devonshire Drive, Suite 127
Champaign, IL 61820

Email: rborup@ita-software.com
Blog: http:// rickborup.conmvblog/

Overview

Microsoft does open source. Sound like an oxymoron? It’s not. In April of 2004, Microsoft
released the Windows Installer XML (WiX) toolset under an open source license. The WiX
toolset, which is used by several teams within Microsoft itself, enables developers to build
Windows Installer setup packages from an XML description of the files, registry entries,
shortcuts, and other resources to be installed. This paper discusses how to deploy aVisua
FoxPro (VFP) application using WiX, and demonstrates how WiX enables you to achieve
complete control over the contents and construction of your application’s Windows Installer
setup package.

Windows Installer Refresher

Microsoft® Windows® Instaler is Microsoft’s tool to support the installation and configuration
of software on Windows computers. If you're a Visual FoxPro developer, chances are you' ve
used Windows Installer, perhaps without even knowing it. That's because ever since version 7.0,
VFP has shipped with a specia edition of the Install Shield Express to create deployment packages
for Visual FoxPro applications. Like other products of its kind, InstallShield Express creates
Windows Installer setup packages. If you've ever deployed an app using a setup package you
built with Install Shield Express, your setup package has used Windows Installer on the target
machine.

What is an MSI file?

Windows Installer setups are driven by a special kind of database file known by its file extension
asan M9 file. Theinstaler engine is a program named MSIEXEC.EXE. MSIEXEC performs the
instalation based on the instructions and resources contained in or referenced by the M S file.
Even when aWindows Installer setup package is built in the form of a self-launching
SETUP.EXE, it contains or references an MS file that Windows Installer uses to run the show.

How do you build an MSI file?

There are several waysto build an MSI file. One way would be to build it by hand using a tool
like Orca, the M S| database editor." While Orcais a great tool for editing and inspecting M S|
files—and if you work with MSI files at al | suggest you download and install it—using it to
build an entire M Sl file from scratch would be, to say the least, difficult and time consuming.

The standard way to build an M S file, of course, isto use a Windows Installer-based setup tool. |
aready mentioned Install Shield Express, but there are of course a host of other tools you can
consider as well, including the full (non-limited) editions of Install Shield Express, the full
InstallShield product, Wise for Windows Installer, Install Aware, Advanced Installer, and others.
The advantage of using tools like these is that they make things easier for you by insulating you to
some extent from the complexities of the MSl file. In other words, by surrendering a certain
amount of control you're relieved from caring about some of the details.

A third way to build as M Sl fileisto use WiX.

What is WiX?

WiX, an acronym for Windows Installer XML, isa set of tools for building MSl files from an
XML source. The WiX toolset, which was released in April of 2004, comprises a schemafor
describing a Windows Installer database in XML and a set of tools for building a Windows
Installer database file from its XML description. When you use WiX, you do give up the
convenience of the point-and-click, drag-and-drop type of interface offered by the other tools. But
the advantage of using WiX isthat you have complete knowledge of and gain complete control
over the structure of your MSl file.

! See http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/orca._exe.asp.
Page 2

�and
,chances
mentpackages
If
performs

Where does WiX come from?

WiX was developed by Microsoft software design engineer Rob Mensching, who was an intern
on the Windows Installer team. Rob is also the author of the Orca, the Windows Installer
database editor mentioned earlier.

Although WiX is an interesting and useful tool inits own right, one of the things that distinguishes
it from most other Microsoft offeringsisthat isit open source. WiX isavailable for download
from sourceforge.net.? There’s nothing to install, just download the binaries and copy themto a
directory on your machine. Although the source is also available for download, you don’t need it
unless you're interested in how it works or in actually contributing to the project.

As of thiswriting, the current version of WiX is 2.0.3309.0, which is the version on which all
examples in this paper are based.

Why care about WiX?

Y ou might ask yourself, “Why should | care about WiX?" After all, there are plenty of other tools
out there for building MSI files.

My initial answer isthat, for one thing, WiX is Microsoft’ s first project released under an OSS-
approved license (the Common Public License). This alone was enough to attract my attention
when it was first released, but it would not have been sufficient to merit my continuing interest—
once | got past the initia “Oh, wow, Microsoft is doing open source’ reaction—unless there was
real value to be found in WiX, which in my opinion thereis.

My other reasons why you should care about WiX are these:

WiX gives you low-level accessto and control over your MS| setups. It's easy to see
what’ s really going on inside.

According to its author, WiX generates “very small, very clean” MS files.

WiX is used by various teams within Microsoft itself, including Office, SQL Server, parts
of Windows itself, and others.

What's in the WiX toolset?

There are several toolsin the WiX toolset. Some of the ones you will most commonly usein
building and working with MSI setup files are:

wix.xsd — the schemafor MSl and MSM files

candle.exe — the compiler; it compiles .wxs filesinto .wixobj files.

light.exe — the linker; it links .wixobj filesinto an .msgi file.

Dark.exe — adecompiler for creating a .wxs file from an .mg file.
All you redlly need to get started are candle.exe, light.exe, and atext editor.

2 The WiX project home can be found at http://sourceforge.net/projects/wix.
Page 3

A first WiX Project

To get started using Wi X, create a.wxs (WiX source code) file using your favorite XML editor.
The VFP editor works fine and so does Notepad, athough you may prefer an editor that provides
XML syntax coloring. One of my favorites is EditPlus®, which can be easily customized to
recognize .wxs files as XML and provides syntax coloring accordingly.

Listing 1 is an example of asimple WiX source code file. Thisfileis available as wixdemol.wxsin
the session download.

Listing 1: A simple WiX source code file

<?xm version="1.0""?>
<l-- WX demp 1 for SWrox 2005 -->
<W x xm ns='"http://schemas. m crosoft.conm w x/2003/01/w ' >
<Product Name='W X Test Package' |d="E7400A72- CDD6-4E09-8102- 76A05FAD4500'
Language='1033" Version='1.0.0.0" Manufacturer="'Informati on Technol ogy Associ ates' >

Description="M first WX test package'
Comments='This is a sanple WX installer package'
Manuf acturer="1nfornati on Technol ogy Associ ates'
I nstal | erVersi on='200" Conpressed='yes' />
<Directory |d="TARGETDIR Name=' SourceDir'>
<Component | d="MyConponent' GCui d='44F6160D- 8DD7- 44DC- B6D2- F154F33D9ABA" />
</Directory>
<Feature |d=' MyFeature' Title="MW Feature' Level=1">
<Conponent Ref | d=' MyConmponent' />
</ Feat ure>
</ Product >
</ W x>

Once you have a WiX source code file, three smple steps will turn it into an installable setup file.
Do these steps from the Windows Command Prompt. (Y ou do remember the command prompt,
don’t you?)

1. Use candle.exe to compile the WiX source code file into an object file
candl e. exe wi xdenpl. wxs

This creates the WiX object code file wixdemol.wixobj.
2. Uselight.exeto create an MSl file from the WiX object file.

i ght.exe wi xdenpl. w xobj

This generates wixdemol.msi.
3. Install the product using the Windows Installer engine MSIEXEC.EXE

nsi exec /i w xdenol. nmsi

3 EditPlus is available from www.editplus.com. EditPlus can also be customized to recognize and provide syntax
coloring for VFP code files such as PRG, SPR, MPR, etc.

Page 4

Andvoild You'vejust installed the WiX Test Package product on your computer. To uninstall
the product, simply do

nmei exec /x wi xdenol. msi

Sidebar: What is a Product?

This example provides a good opportunity to illustrate the concept of a*“product” in Windows
Installer. Windows Installer installs “products’. The WiX source code filein Listing 1 defines a
Windows Installer product named WiX Test Package. After MSIEXEC has been run, the product
is“ingalled”, asfar as Windows in concerned, even though setup didn’t copy a single file onto the
computer! Don't believe me? Open the Windows Add/Remove Programs (ARP) applet and take a
look.

7 Add or Remove Programs E]@
=i L
@J Currently installed programs: [1 shew updates Sort byt | Mame w
Change or & Wise For Windows Installer 5,21 Size 35.89MEB M
Remove
Programs ﬁ'_:’;! WiX Test Package
. Click here For support information. Used rarely
;1)51 To change this program or remove it From your computer, click Change or Remove, Change R
Add Mew
Frograms @ ¥MLEditPro ve.2 Size 3.62MB
EA Zonedlarm Pro Size G.43ME |,
';l w

Figure 1: As far as Windows in concerned, the WiX Test Package product is “installed” even though
setup didn’t copy a single file onto the computer.

Windows Installer Refresher

A little refresher on Windows Installer concepts and terminology may be helpful here. Windows
Installer packages are built from components. A component is a group of one or more related
resources—files, shortcuts, registry entries, etc.—that belong together. A file or other resource
must belong to one and only one component.

Components are grouped into features. A feature is agroup of one or more components that are
installed together. A component can belong to one or more features, but each component is
installed only once on a give machine.

Think of a Windows Installer setup package as athree-level hierarchy. The product is at the top
of that hierarchy. Users can interact with a Windows Installer setup package at the product level,
as during adefault or typical install, or they might interact with the setup package at the features
level, as during a custom install. Developers, on the other hand, have to interact with the setup
package at the component and individual resource level.

Every Windows Installer product, package, and component is identified internally by a unique
GUID. The product code GUID remains constant for all releases within the same major version of

Page 5

a product. The package code GUID changes for each build that is released into the wild. The
component code GUID changes according to the rules governing components. See the Windows
Installer Help file for more information.

To close out this refresher, remember that components are targeted for installation to a specific
location on the user’s machine. Thislocation is defined by a directory hierarchy specified in the
MSl file.

WiX Project No. 2

Now let’s see how to use WiX to create a setup package for a Visual FoxPro application called
myV FPApp. The application comprises three files: the executable file myVFPApp.EXE, an
HTML Help file named myVFPApp.CHM, and aread me file named readme. TXT. The goa isto
instal these three files and to create desktop and start menu shortcuts for the executable file.

The WiX source code file for this sample application is shown in Listing 2. The blank lines are
included only to make it easier to see the various pieces of the file. Thisfile isavailable in the
session downloads as wixdemo2.wxs.

Listing 2: The WiX source code file for a sample Visual FoxPro application

<?xm version="1.0" encodi ng="w ndows- 1252' ?>
<l-- WX demp 2 for SWrox 2005 -->
<W x xm ns='"http://schemas. m crosoft.conmw x/2003/01/wi ' >

<Product Name='nyVFPApp 1.0' |d='"E9F62B67- AEDB- 4358- BA2F- 4D93CD291EFC
Upgr adeCode="' 30B56 FAD- ADEF- 42EC- 9A41- 5D634F7CE36F'
Language='1033" Version='1.0.0" Mnufacturer='Information Technol ogy Associ ates'>

Description=" A W X package for a sanple Visual FoxPro application.'
Comrent s=' nyVFPApp is a registered trademark of ITA.'

Manuf acturer="1nfornati on Technol ogy Associ ates'
I nstal | er Versi on='200" Conpressed='yes' />

<Media 1 d='1" Cabinet="w xdenp2.cab' EnbedCab='yes' D skPrompt="nyVFPApp CD #1" />
<Property |d='"Di skPronpt' Val ue='nyVFPApp 1.0 Installation [1]' />

<Directory |d="TARGETDIR Name=' SourceDir'>
<Directory |1d="Progranfil esFol der' Nane='PFiles'>
<Directory 1d="ITA" Name='|TA >
<Directory |d="INSTALLDI R Narme='nmyVFPApp' LongNane='nyVFPApp 1.0'>

<Conponent | d="Mai nExecut abl e’ Gui d=' C7TFB2458- 7A00- 4164- 8218- 247C86849380' >
<Fil e 1d=" nyVFPAppEXE Nane='nmyVFPApp. exe' LongName='nyVFPApp. exe'
Di skl d="1" src=' myVFPApp. exe' Vital ='yes' />
<Shortcut |d="startmenuMyVFPApp" Directory="ProgranmvenubDir" Nane="nmyVFPApp"
LongNane="nmyVFPAPP 1. 0" Target="Conpl ete" Worki ngDi rectory="'1NSTALLDI R
I con="nyVFPApp. exe" |conl ndex="0" />
<Shortcut |d="desktopMyVFPApp" Directory="DesktopFol der" Nanme="nyVFPApp"
LongNane="nmyVFPApp 1.0" Target="Conpl ete" Worki ngDirectory="1NSTALLDI R
I con="nyVFPApp. exe" |conl ndex="0" />
<RermoveFol der |d='ProgramvenuDir' On='uninstall' />
</ Conponent >

<Component |d="ReadMe' Guid='8019571C 4F69- 4ECF- 9504- 911E45897865' >
<File 1d=' ReadMe' Nanme='nyReadne.txt' Diskld="1" src='"nyReadne.txt' />
</ Conponent >

<Component |d="Hel pFile' Guid='F4C401F1- CE6F- 48F6- A9B0- FC63D52A34A1" >
<File 1d="Hel pFile'" Name='nyVFPApp.chm Diskld="1" src='nyVFPApp.chm />
<Shortcut |d="startnenuHel p" Directory="ProgranvenuDi r" Nane="Hel p"

Page 6

LongNane="nmyVFPApp Hel p File" Target="Conplete" />
</ Conponent >

</Directory>
</Directory>
</Directory>

<Directory |d="ProgramvenuFol der" Nane="PMenu" LongNanme="Prograns">
<Directory |d="ProgranmvenuDir" Name='nyVFPApp' LongName="nyVFPApp 1.0" />
</Directory>

<Directory |d="DesktopFol der" Nane="Desktop" />
</Directory>

<Feature |d='Conplete' Level="1">
<Conponent Ref | d=' Mai nExecutable' />
<Conponent Ref | d=' ReadMe' />
<Conponent Ref |d="Hel pFile'" />

</ Feat ure>

<l con |d="nyVFPApp. exe" src="myVFPApp. exe" />

</ Pr oduct >
</ W x>

While thisis obviously a more complicated file than the first example, knowing the concepts
behind a Windows Installer setup package makes it relatively easy to understand what’ s going on.

Several things are worth noting about this file. The Product element gives the product its name
and establishes its product code GUID, which can be seen as the in the familiar 8-4-4-4-12 pattern
of hexadecimal charactersin the Id attribute. An upgrade code GUID can aso established in the
Product element, asillustrated by the UpgradeCode attribute.

Asyou would expect, the package code GUID is set in the Package element, but in Listing 2 the
package code GUID iswritten as a string of question marks instead of a string of hexadecimal
characters. Why isthis? Remember that unlike the product code and the upgrade code GUIDs,
the package code GUID is supposed to change every time you build the package. WiX helps you
do this by inserting a new GUID whenever it sees one written as a string of question marksin the
source code file.

The nested Directory tags specify the target location for the files being installed by this package.
In this case, the destination is\I TA\myV FPApp under the user’s Program Files directory.

Asyou can see from Listing 2, this package is configured as three components named
MainExecutable, ReadMe, and HelpFile. Each component installs one of the three files, while the
MainExecutable component aso creates the two shortcuts. As the devel oper, the decision about
how to assign files and other resources to componentsis yours. It would have been perfectly okay
and equally valid to place all three files in the same component, but using three components makes
for a better example.

Near the bottom of Listing 1 you can see this setup package offers only one feature called
Complete, which ingtalls al three components. The ComponentRef elements within the Feature
element associate the components with the feature(s) to which they belong.

Compiling, linking, and installing this product follows exactly the same steps as the first example.

candl e wi xdenp2. wxs
I'i ght wi xdenp2. w xobj
nsi exec /i wi xdenp2. nsi

Page 7

Whenever you run MSIEXEC, you can tell it to create alog file asit goes along. Inspecting this
log file tells you exactly what Windows Installer actually did asit installed the product. Log files
are mostly used for debugging, but it can be educational to look through them even when there
are no errors.

To generate alog file, add the /I parameter (that'san “I” asin “log”), like this:
msi exec /i wi xdemo2. msi /1* w xdemp2. 1 og

Use/I* tolog all information. Use /I*v to create a verbose log of all information. The log file for
this particular ingtall runs about 250 lines. A portion of it is shown in Figure 2.

EditPlus - [C:\SWFox2005\Sessions \WiX\wixdemo 2. log] ‘:;
@ Fil= Edit Wiew Search Document Project Tools ‘'Window Help ;
Tade Bavl L@ X Yt | A= 18 0 T ® 0]\ Of

1 #wixdemol wxs | @ wixdemoz wixs @ wixdemnoZ log

=== lLogging started: 5/17/2085 153:45:44 === £
Action 15:46:44; INSTALL. o
Action start 15:46:44; IMSTALL.
Action 15:4a:44; ValidateProductID, fﬁ
Action start 15:46:44; YalidateProductID, #2
Action ended 15:46:44; YalidateProductID., Return walue 1. L
bRction 15:46:44: CostInitialize. Computing space requirements
Action start 15:46:44; CaostInitialize. ji
Action ended 15:46:44; CostInitialize. Return walus 1. &
Action 153:46:44: FileCost, Computing space requiremsnts
Action start 15:46:44; FileCost.
Action ended 15:46:44: FileCost., Return wvalue 1.
Action 15:46:44: CostFinalize. Computing space requirements
Actijon start 15:46:44: CostFinalize.
Action ended 15:46:44: CostFinalize. Return walue 1.
Action 15:46:44: ExecutepAction.
Actijon start 15:46:44: ExecutepAction.
Action start 15:46:44: INSTALL.
CAction start 15:46:44) WalidateProductID,
LACTT on, %?Ei L ARl M gl B2 d:-J\-;p‘n..,ﬁ_Ram___r[jﬁ_ }f,ag} ’Lée_ﬁ:hf\._

"'g b

l'_.f»\
o,

Bt

M\)‘"‘“\‘ -

R o Loy

Figure 2: MSIEXEC creates a log file if you use the /| parameter.

As before, you can uninstall the product by running MSIEXEC with the /x parameter.

nei exec /x wi xdenp2. si

Using merge modules

Although Listing 2 isavalid WiX source code file for a VFP app, it does not install the VFP
runtime support library files. Microsoft makes the VFP runtime files available for distribution in
the form of Windows Installer merge modules.

WiX makes it easy to include merge modules in your source file. Simply insert a Merge el ement
that references the desired merge module. Listing 3 isthe WiX source code to incorporate the

four merge modules typically included when deploying a VFP 9.0 app. These lines are part of the
Page 8

third example named wixdemo3.wxs. The fileistoo large to reproduce in its entirety here, but it is
included in the session downloads.

Listing 3: Use a <Merge> element to include a merge module.

<Mer ge | d=' Mbdul e_VFPGDI Pl us' Language='1033'

src=" C:\ SWFox2005\ VFP9 Mer ge Mddul es\ VFP_GDI Pl us. mem Di skl d="1" />
<Mer ge | d=' Mbdul e_VFP9Runti ne' Language='1033'

src="C:\ SWFox2005\ VFP9 Mer ge Mddul es\ VFPORunti me. msm Di skl d="1" />
<Mer ge | d=' Mbdul e_VFP9HTM.Hel p' Language=' 1033'

src="C:\ SWFox2005\ VFP9 Mer ge Mddul es\ VFPOHTM_Hel p. msmi Di skl d="1" />

<Mer ge | d=' Mbdul e_MSVCR71' Language='1033'

src=" C:\ SWFox2005\ VFP9 Merge Mddul es\VC User CRT71_RTL_X86_---.msm Diskld="1" />

For each Merge element, add a corresponding MergeRef element to the feature with which the
merge module should be installed. Asin the previous examples, there is only one feature defined
in widemo3.wxs. The Feature element from that example is shown in Listing 4. Note the Id
attribute of the MergeRef element must match the Id attribute of the Merge element to which it
refers.

Listing 4: Add a <MergeRef> element for each <Merge> element.

<Feature |d='Conplete' Level="1">
<Conponent Ref | d=' Mai nExecutable' />
<Conponent Ref | d=' ReadMe' />
<Conponent Ref |d="Hel pFile' />
<Mer geRef | d='" Modul e_VFPGDI Pl us' />
<Mer geRef |d=' Modul e_VFPORuntine' />
<Mer geRef | d='"Modul e_VFPOHTM_Hel p' />
<Mer geRef |d='"Modul e_MSVCR71' />

</ Feat ure>

VFP 9.0 Merge Modules

I’ ve run into two issues using the VFP 9.0 merge modulesin aWiX sourcefile asillustrated in
wixdemo3.wxs. One issue is that the merge module for the C++ v7.1 runtime support file installs
MSVCR71.DLL to theroot directory of the drive instead of to the INSTALLDIR, whereitis
supposed to go. | struggled with this problem for a quite a while before consulting the WiX
support mailing list, where | found that other Visua Studio devel opers using this merge module
had encountered the same problem. Rather than spend any more time trying to figure out what
was wrong, ether with the merge module or with the way | was using it in WiX, | smply decided
to abandon use of that particular merge module and install MSVCR71.DLL to INSTALLDIR just
like any other file.

The other issue relates to the creation of registry entries for the VFP 9.0 runtime files. The merge
modules for these files contain instructions to write the necessary registry entries. What | found,
however, is that this wasn't happening on the target machine and so the VFP app wouldn’t run
even though it was installed. The solution | used was to add explicit instructions in the WiX
source code file to be sure the WriteRegistryValues action is included in the

I nstal| ExecuteSequence table (see the Windows Installer Help file and the WiX Help file for more
information on these terms). This seems to have solved the problem.

Page 9

A revised version of example 3 containing these two changes is available in the session download
as wixdemo3_revised.wxs.

Merge modules aren’t so mysterious

A merge moduleisjust a pre-packaged set of components for others to use. Although most of us
typically use merge modules written by others—the VFP 9.0 runtime merge modules written by
Microsoft are a good example—you can aso write you own merge module from scratch.

To create a merge module with WiX, simply use a Module e ement instead of a Product element
and use the same GUID for the Module that you use for the Package. Because a merge module
awaysin ingals the same resources and because it may potentially be used by thousands of
different devel opers deploying thousands of different applications, a merge module’s GUID is
frozen at the time it’s created and never changes after that.

The WiX source code to create a merge module looks very much like the source code for a
product. Listing 5 shows the code to create a merge module that installs a file named myFile.txt.
The code is available in the session downloads as my Module.wxs.

Listing 5: Use a Module element to create a merge module with WiX.

<?xm version="1.0" encodi ng="utf-8"?>
<l-- Oiginal contributed by Marc Borgers. -->
<!-- Paths and fil enames changed by Gabor Deak Jahn. -->
<l-- Mbdifications by Rick Borup -->
<W x xm ns="http://schemas. m crosoft.con w x/ 2003/ 01/ w ">
<Mbdul e 1d="Filel" Guid="97151078-9040- 44AE- 85F5-3326D42291A8"' Language='0"' Version='1.0.0">

<Package |d='97151078-9040- 44AE- 85F5- 3326D42291A8' Instal | er Versi on=" 200’
Languages='1033" Manufacturer="Information Technol ogy Associ ates'
Sumrar yCodepage="' 1252' Adni nl mage=' no' Short Names='no' />

<Directory |d="'TARGETDIR Name=' SourceDir'>
<Directory |d="Progranfil esFol der' Nane='PFiles'>
<Directory I1d="ITA" Name='|TA >
<Directory |d="INSTALLDIR Narme='nyFile' LongName='nyFile 1.0'>

<Conponent |d="Filel" Cuid="DDD9724F-6788-4C7D-9134- 2E8DD1E575D1"' >
<File Id="Filel" Name='nyFile.txt' src="nyFile.txt' />
</ Conponent >

</Directory>
</Directory>
</Directory>
</Directory>

</ Mbdul e>
</ W x>

Use candle and light to compile and link the WiX source code fileinto an .msm file and you're
ready to go.

Adding a user interface

One important piece still missing from our WiX-generated setup package is a user interface.
Although you can certainly install a product from an .msi file without providing a user interface—
the three examples presented so far do this, for example—you customarily want to be able to

Page 10

provide the user with alicense agreement, dialogs to change the installation directory and to
select features in a custom install, and so forth.

Windows Installer does not have a built-in user interface, so Windows Installer-based setup tools
such as Install Shield and Wise for Windows Installer provide one for you. When you use WiX,
however, you need to build in your own user interface. Fortunately, thisisn’t hard to do.

Probably the easiest way to begin constructing your own user interface isto start with one that’s
already been built. Among the choices are the free UlSample.msi, which is available from
Microsoft as part of the Platform SDK for Windows Installer, or to use the WiX toolset
decompiler program dark.exe to convert an existing .msi file to XML, inspect its user interface,
see how it was constructed, and build your own from that.

The good news isthat as of release 2.0.3220.0, WiX now suppliesits own user interface for you
to use. Thisinterface has three versions, each of which comesin its own file with awixlib file
name extension. These three files, along with the bitmaps required by the user interface, are in the
‘ui’ folder of the WiX binaries download. The WiX tutorial describes the difference between the
three versions.

Separately, thereis anew user interface editor called WixTool currently under development. Y ou
can find WixTool at http://wixtool.org/.

A sample user interface

While the details of the user interface itself are beyond the scope of this paper, the mechanism for
including a user interface in your WiX source code file is quite simple.

In aWiX source code file, the user interface goesin the Ul element surrounded by the <UI> and
</UI> tags. One way to get it there isto copy and paste the entire user interface element text—
which, as you can image, can be quite lengthy—into the source file. Thisisillustrated in file
wixdemo4.wxs, which is available in the session downloads.

The easier way, however, isto insert the user interface from an external file using the UIRef tag®,
asshown in Ligting 6. Thislisting aso illustrates some additional attributes in the Feature element
that are relevant to the user interface, as well as showing how a product can be configured as two
features. The entire file for this example is available in the session downloads as wixdemo6.wxs.

Listing 6: Use the <UIRef> tag to incorporate an external user interface file.

<Feature |d='Conplete' Title=" nyVFPApp 1.0' Description='The conpl ete package.'
Typi cal Default="install' Di splay="expand' Level="1'
Confi gurabl eDi rect ory="1 NSTALLDI R >
<Feature |d='"MainProgrami Title="Program Files' Description="The main executable.'
Typi cal Default="install' Level="1">
<Conponent Ref | d=' Mai nExecutable' />
<Conponent Ref | d=' ReadMe' />
<Conponent Ref |d='VC71Runti meDLL"' />
<Mer geRef | d='" Modul e_VFPGDI Pl us' />
<Mer geRef |d=' Modul e_VFPORuntime' />
</ Feat ure>

* The UIRef tag is new in WiX v2.0.3309.0. In earlier versions, a FragmentRef tag was used to pull in an external
user interfacefile.

Page 11

<Feature Id="HelpFile' Title="Help File' Description='"The HTM. Help file.' Level ="1">
<Conponent Ref |d="Hel pFile'" />
<Mer geRef | d='"Modul e_VFPOHTM_Hel p' />
</ Feat ure>
</ Feat ure>

<U Ref Id="WxU" />

<l con |d="nyVFPApp. exe" src="myVFPApp. exe" />

Compile this source code as you would any other, using candle.exe. To build the .msi file, you
need to tell light.exe to include one of the three WixUI wixlib filesin addition to the
wixdemo6.wixobj file you generated with candle. Also, because you are linking more than one
file, light requires you to use the —out parameter to specify the name of the output file. For
example, if you decide to use the wixui_mondo version of the user interface the syntax would be

Iight —out wi xdenp6. nsi wi xdenp6.w xobj w xui _nmondo.w xlib

One additional requirement of this user interface is there must be alicense file named license.rtf.

Using fragments

A fragment isaway of breaking up alarge WiX source file into smaller pieces. Fragments are
stored as .wxs files and are defined by the Fragment element. In the main source file, a
FragmentRef tag is used to incorporate the fragment into the whole.

Although it now requires its own UIRef tag instead of the FragmentRef tag, the user interface
pieceis still one good example of where afragment is useful. The advantage of using a fragment
isthat it enables reuse of static code common to several different products. Fragments are aso
useful when working in a multi-devel oper teams because each developer can work on one or more
fragments that can later be combined to make the complete source file.

WiX aso alows for the use of include files. These files, which are analogous to header (.h) files,
are stored with a .wxi file name extension.

Other things to mention

The WiX toolset includes other tools besides candle and light. As mentioned earlier, the
decompiler dark.exe generates XML from an existing .ms or .msm file. Thisis very useful asa
learning tool as well as a debugging tool.

Tallow is a source code generation tool. It walks a directory tree and creates a WiX fragment for
thefilesit finds. Tallow can configure the fragment as one single component for al filesin each
directory, or as individual components for each individud file.

Running tallow.exe as shown below generates the WiX fragment shown in Listing 7.

tall ow -nol ogo -d \swfox2005\sessions\wi x\distrib > distrib.wxs

Listing 7: Tallow generated this fragment from the files in the sample ‘distrib’ directory.

Page 12

<W x xm ns="http://schemas. m crosoft.com w x/2003/01/w ">
<Fr agnent >
<Direct oryRef |d="TARGETDI R'>
<Directory Id="directory0" Name="distrib">

<Conponent |d="conponent 0" Di skld="1">
<File 1d="file0" Name="nyvfpapp.chm src="C: \SWox2005\di strib\nyvfpapp.chm />
<File Id="filel" Name="nyvfpapp.exe" src="C:\SWox2005\di strib\nyvfpapp. exe" />
<File Id="file2" Name="readne.txt" src="C:\SWFox2005\distrib\readnme.txt" />

</ Conponent >

<Directory ld="directoryl" Nanme="Data">
<Conponent |d="conponent1" D skld="1">

<File Id="file3" Nane="CUSTOV-1.CDX"' LongName="custoners. CDX"
src="C:\ SWFox2005\ di stri b\ Dat a\ cust omers. CDX" />
<File Id="fil e4" Nane="CUSTOV-1.DBF" LongName="custoners. DBF"
src="C:\ SWFox2005\ di stri b\ Dat a\ cust oners. DBF" />

</ Conponent >

</Directory>

</Directory>
</ Di rect or yRef >
</ Fragment >
</ W x>

Alternatively, running tallow.exe with the -1 parameter as shown below generates the WiX
fragment shown in Listing 8.

tallow -nologo -1 -d \swf ox2005\sessi ons\wi x\distrib > distribl.ws

Listing 8: With the -1 parameter, tallow generates one component for each file.

<W x xm ns="http://schemas. m crosoft.con w x/ 2003/ 01/ w ">
<Fr agnent >
<DirectoryRef |d="TARGETDI R'>
<Directory Id="directory0" Name="distrib">
<Conponent |d="conponent 0" Di skld="1">
<File Id="fil e0" Name="nyvfpapp.chnt
src="C: \ SWFox2005\ Sessi ons\ W X\ Di stri b\ myvfpapp. chni' />
</ Conponent >
<Conponent |d="conponent1" D skld="1">
<File Id="filel" Name="nyvfpapp.exe"
src="C: \ SWFox2005\ Sessi ons\ W X\ Di stri b\ myvf papp. exe" />
</ Conponent >
<Conponent |d="conponent2" D skld="1">
<File Id="file2" Nane="readne.txt"
src="C:\ SWFox2005\ Sessi ons\W X\ Di stri b\readne. txt" />
</ Conponent >
<Directory ld="directoryl" Nanme="Data">
<Conponent |d="conponent 3" D skld="1">
<File Id="file3" Nane="CUSTOM-1.CDX"' LongNanme="custoners. CDX"
src="C:\ SWFox2005\ Sessi ons\ W X\ Di stri b\ Dat a\ cust omers. CDX" />
</ Conponent >
<Conponent |d="conponent4" D skld="1">
<File Id="fil e4" Nane="CUSTOV-1.DBF" LongName="custoners. DBF"
src="C:\ SWFox2005\ Sessi ons\ W X\ Di stri b\ Dat a\ cust omers. DBF" />
</ Conponent >
</Directory>
</Directory>
</ Di rect or yRef >
</ Fragment >
</ W x>

Running tallow.exe with the /? parameter displays its usage syntax and parameter values.

Findly, thereis Votive. Votive is a Visual Studio 2003 extension that provides intellisense and
integrated support for candle and light within VS2003. Votive is a separate download from the
rest of WiX.

Page 13

Conclusion

WiX isaredly useful tool that represents an interesting departure from the usual Windows
Installer setup tools. Although it obliges you to know more about the structure of your Windows
Installer setup file than other tools do, in return it provides you with much more control over the
structure of your setup than most other tools do. Because it is XML based, you can easily create
WiX source code files using your favorite text or XML editor. Although WiX has been around
only since April of 2004, it has attracted a lot of attention and is being used by many devel opers
including some within Microsoft itself. If you're comfortable with XML and are interested in
achieving fine-grained control over your Windows Installer setups, WiX isthe tool for you.

Acknowledgements

| am indebted to several sources for information about WiX. One of the most helpful isthe
excellent tutoria by Gabor Dedk Jahn, available at www.tramontana.co.hu/wix/. The Help file
included with WiX itself is aso afine reference. WiX author Rob Mensching writes about WiX
and other topics on his blog at http://blogs.msdn.com/robmen/rss.aspx. Rob also authored an
article for MSDN entitled Using the WiX Toolset to Integrate Setup into Y our Development
Process, available at http://msdn.microsoft.com/library/en-us/dnwingen/html/wixsetup.asp.
Support for WiX is available viathe WiX project mailing lists on the SourceForge® website; the
searchable wix-users archive at http://sourceforge.net/mailarchive/forum.php?orum_id=39978
has been a great source for answers and information posted by other WiX users.

About the author

Rick Borup is an independent devel oper specializing in the design, development, and support of
mission-critical business software solutions for small to medium-size businesses. Rick earned B.S.
and M.B.A. degrees from the University of Illinois a Urbana-Champaign, and is owner and
president of Information Technology Associates in Champaign, Illinois. He has been developing
solutions with FoxPro/Visual FoxPro (VFP) full-time since 1993, and is a Microsoft Certified
Solution Developer (MCSD) and a Microsoft Certified Professional (MCP) in VFP.

Copyright © 2005 by Rick Borup.

Microsoft, Windows, Visual FoxPro, and other terms are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries. Other trademarks are the property of
their respective owners.

Page 14

