This paper was originally presented at the Great Lakes Great Database Workshop in Milwaukee,
Wisconsin in October, 2003.

Understanding
Windows Installer

Session 8

Rick Borup

Information Technology Associates
701 Devonshire Drive, Suite 127
Champaign, IL 61820

Voice: 217.259.0918

Email: rborup@ita-software.com

Overview

In this session you will learn about the Windows Installer, Microsoft’ s core technology for
ingtalling Windows® software applications. Y ou will learn about the design objectives for
Windows Installer, take alook inside a Windows Installer database and see how it is put together,
think about how to design your applications with Windows Installer deployment in mind, learn

how to handle upgrades, updates, and patches, and in general become more comfortable using a
Windows Installer-based setup tool.

What is Windows Installer?

Windows Installer is Microsoft’ s answer to the need for an open, standardized approach to
ingtalling Windows application software. Windows Installer was originally created for Microsoft
Office, and version 1.0 was used for the release of Office 2000 in June, 1999. Shortly thereafter,
Windows Installer became an officia part of the Windows operating system, as version 1.1 of the
Windows Installer was built into Windows 2000 and was aso made available as aredistributable
for older versions of Windows. Since that time, version 1.2 was released with Windows Me and
the current version, Windows Installer 2.0, was built into and released with Windows XP. Version
2.0 of the Windows Installer is also available as aredistributable for earlier versions of Windows
including Windows 95/98. Version 3.0 of Windows Installer is currently in beta.

Windows Installer design objectives

Open architecture

Prior to the creation of Windows Installer, there were (and for that matter till are) severa third-
party tools for creating installation setups for Windows applications. Many of these are quite
sophisticated and powerful, and are widely used by independent and corporate developers dike.
One difficulty with the setup packages created by such tools, however, is that they tend to be a
“black box” as far as the end user is concerned. In other words, you can’t realy know what is
going on inside. This may not be a problem for the individual desktop user, but it can be areal
concern for system administrators who might be responsible for deployment on dozensiif not
hundreds of machinesin atightly controlled environment. Another issue for system administrators
isthat they sometimes need to exercise a certain amount of control over the setup, perhaps
configuring it differently for one group of users than for another group; traditional setup tools
generaly do not provide for exercising this type of control “in the field”.

Windows Installer addresses these issues by using an open architecture for its setup packagesin
the form a database whose schema s fully documented and available to the public, and by
following a standardized sequence of steps to perform installations. In addition, the Windows
Installer SDK provides tools that make it possible for system administrators and others to apply
modifications to a setup database even if it was authored by someone else.

Standardized installation process

Regardless of which tool you use to author a Windows Installer setup package (InstallShield
Express, InstallShield Devel oper, Wise for Windows Installer, or the Windows Installer SDK
itself, to name a few), the end product is a standardized database in the form of an M S file that
the Windows Installer program will use to install your software. Although the installation
instructions contained in the database will of course differ from one application to the next, the
sequence of steps used by Windows Installer to process the database is essentially the same for all

applications. This provides a high level of consistency and reliability for all software installations
regardless of their source.

Managing shared resources

One of the biggest problems that could result from the installation of applications software was
the possibility that a shared resource, such asaDLL file, would get overwritten by an
incompatible or out-of-date version of the samefile, or uninstalled by one application even though
another application still needed it. Either of these Stuations could break another application that
relied on the origina file. Windows Installer addresses this issue, which is commonly referred to
as“DLL hdl”, by managing the registration of shared resources in such away that thisisfar less
likely to happen.

Managing state integrity of the computer

One of the other risks associated with some earlier software installation technol ogies was the
possibility of leaving the computer in an unstable state if an installation failed or was canceled
before completion. The types of problems that could arise from this include some files being
copied but others not copied, registry entries made but corresponding resources not present, older
files deleted but not restored upon cancellation, etc. Windows Installer addresses this issue by
managing the entire install ation as a transaction with rollback capabilities: either the entire
ingtallation succeeds and all changes are committed to the machine, or none of it succeeds and
whatever was done up to the point of failure isrolled back. In this way, the target computer is left
in a stable state, either as it was before the installation began or as it should be after the
instalation is complete.

Customization “in the field”

As mentioned earlier, system administrators often need to configure the installation of a particular
piece of software differently for one group of users within their organization than for another
group. Windows Installer makes this possible in at least two ways. One is that software installed
by Windows Installer must be organized into “features’; features can be made optional, which
then provides a choice as to whether to install them or not. Secondly, because of the open nature
of the MSI database and the availability of tools to modify them in the field, such as Windows
Installer transforms, system administrators are not stuck with whatever the application vendor or
I'T department provides them but can exercise a certain amount of control over the installation
process.

Installation on “locked down” desktops

Another challenge faced by system administrators is the need to install software on machines
whose day-to-day users do have administrative access rights to the machine. This can lead to
problems if a setup package needs to do things that only an administrator can do. Windows
Installer provides a solution to this challenge by allowing setup packages to be configured to run
with elevated privileges even when the logged-on user does not have those privileges.

Inside a Windows Installer database

The core piece of a Windows Installer setup package is the MSI database. Thisis arelational
database that utilizes data tables to describe all of the requirements for the setup. Like any
relational database, an M S| database uses primary and foreign keys to establish the relationships
between tables. All of thisisfamiliar territory for Visual FoxPro developers, even though the
physical structure of an MSI database is nothing like a VV FP database.

To look inside of an M SI database, you need atool. Some third-party Windows Installer-based
development programs may provide their own tool for this purpose, but the tool provided by
Microsoft isthe M S| database editor called Orca. Orca can be downloaded from Microsoft as part
of the Windows Installer SDK." It is also available as part of the MSDN Universal subscription.
After installing the Windows Installer SDK, you will find ORcA.MsI (the MSI file for installing
Orca) in Program Files\Microsoft SDK\Bin; right-click on it and choose “Install” to install Orca.

Once Orcaisingalled on your computer, you can use it to open any MSI file. Because Orcais an
editor aswell as a viewer, you can also make changesto an M Sl file using Orca. Of course, thisis
not something you will typically want to do unless you are very sure you know what you're
doing, any more than you would manually change afield in atable of a complex VFP database
without understanding the potential impact that change might have on other fields and tables.

Summary Information

One of the first thingsto look at when opening an M Sl file is the Summary Information Stream
(S1S). Thisinformation will tell you about the contents of the MSI file. Figure 1 showsthe SIS
from the M S file for this session’s sample application (myVFPApp) as viewed in Orca.

! To download the Windows Installer SDK go to http://www.microsoft.com/msdownl oad/platf ormsdk/sdkupdate.
Note that you may also be required to download and install the Core SDK, which is quite large. Information on
other ways to obtain the complete SDK can be found at http://msdn.Microsoft.com/library/default.asp?url=/library/
en-us/sdkintro/sdkintro/obtaining_the complete sdk.asp.

Edit Summary Information E |

AR | nistallation O atabase

Authar: |Infn:|rmatin:|n Techhalogy Azzociates

Subject: Im_l,l"v"FF'.-’-'-.pp

Comments: |Contact “four local administrator

Eemwordz: | Inztaller k51,0 atabasze

Platfarm: Ilntel vI Lanquanges: I'IEISS

Package Code: |{4B.-'-‘-.E|EE|FE-E BA3-11D7-8387-00500AR4B851}

Schema: |2DE| Security: IHead-nnI_l,l reu:u:ummmj

Source Image

Eile names:
" Shart [Compressed
= Laong [Admin Image

Q. I Cancel

Figure 1. The Summary Information for myVFPApp.MSI can be viewed in Orca.

Because Orcais an editor as well as a viewer, the dialog shown in Figure 1 is an edit window as
well as adisplay window. If it were necessary for you to change any of the information shown,
you could do so viathis dialog.

GUIDs and other IDs

One thing to point out here is the Package Code field, which you can seein Figure 1. Every MS|
database that is released “into the wild” must have a unique Package Code; thisis true even for
each different version of the same product. GUIDs (Globally Unique IDentifiers) are used to
make this possible, but it is up to you as the setup developer to make sure that each of your MSI
database files has a unique Package Code GUID. Fortunately, most Windows Installer-based
setup tools, including Install Shield Express that ships with Visua FoxPro, will change the
Package Code GUID automatically every time you build arelease, so thisis not generally
something you have to remember to do manually.

Two other GUIDs that are also important when working with MS| database files are the Product
Code and the Upgrade Code. We'll discuss the importance of these two GUIDs, along with
another property called the Product Version, when we talk about upgrades and updates later in
this paper. For now, you should simply be aware that each mgjor version of a product (in
Windows Installer terminology, your application is a*product”) should have a unique Product
Code, and that all versions of the same product should have a common Upgrade Code. The

Product Code and the Upgrade Code of an M S| database can be seen by looking at the Property
table of the M Sl file.

The Property table

~* myY¥FPApp.msi - Drca

File Edit Tables Transform Toolz Miew Help

D|=(E] el F=e] =bE

Tables |ﬂ Property | Walue | ﬂ

LaunchCondition DizplayM ameT wpical Typical

ListBox Dizplay_|sEitmapllg 1

Listwiew ErrorDialog SetupErrar

LockPemissions INSTALLLEVEL 100

tIME ISCHECKFORPRODUCTUPDATES 1

tedia ISVROOT_PORT_MO 1}

ModuleComponents InstallChoice AR

ModuleDependancy LA IMCHPROGRAR 1

MaduleE melusion LAUMWCHREADME 1

ModuleSignatune d anufacturer Information Technology Associates

MoveFile FIDTemplate 12345 BER- 2R R 2 @EREEE

tzidszzembly FroductCode {4849CIEG-ERAS-11D7-8357-0050DAG4B 851}

zitzzemblyM ame Productl anguage 1033

siDigitalCertificate Productt ams myWFPApp

siDigitalSignature Productyerzion 1.0.0

tziFileH azh ProgrezzTypel inztall

QDB CAttribute ProgrezsTypel Installing

QDBCD ataSource ProgressType2 ingtalled

QDBCDriver ProgressType3 inztalls

ODBCS ourcedttribute FiebootyesHo Yes

ODEBCT ranslator ReinstallFiley'erzion o

Patch ReinstallModeT ext anmus

PatchPackage R einstallR epair T

Progld T | SERIALNUMYALSUCCESSRETWAL 1

Property SetupType Typical

PublizhComponent UpgradeCode 14849C9E5-ERAS-11D7-8387-0050DAE4E 251}

FadioButton _|sMaintenance Change

Reglocataor _lsSetupTypetdin Typical |

Registry ﬂ =
Tables: 101 |Froperty - 43 rows [Mo colurn is selected. i

Figure 2. The Property table is where you will find the Product Code, the Upgrade Code, and the Product
Version for the MSI file.

There are something like 89 permanent tables defined in the MSI 2.0 database schema. If you're
going to be doing alot of work with MSI files or the Windows Installer SDK, you will want to
become familiar with most if not al of these. As an application devel oper, however, you don’t
need to know all the details, you just need to know enough to find your way around. You're
probably going to rely on atool like InstallShield Express to build your MSI databases for you,
but you' d like to be able to go in and see (and maybe even change) what’ s in those databases from
timeto time.

When inspecting an M S| database for the first time, the Property table is a good place to start. In
this table you will find the product name, the product version, the product code GUID, the
upgrade code GUID, and a host of other useful information about the database. Figur e 2 shows
the Property table for myVFPApp.

The Feature table

~% my¥FPApp.msi - Orca

File= Edit Tables Transform Toole Miew Help

D|s|E] 2=l #=e] =2
T ables Iﬂ Feature I Feature_Parent I Title I Description I Dizplay I Lewel I Directory I Altributes I
E rvironment Ailwayznstall Alwayz Inztall tdain program file 0 1 IMSTALLDIR 16
Errar D ataFiles Diata Files Data files 4 1 INSTALLDIR 16
E venttd apping HelpFile Help Fil Help file 2 101 INSTALLDIR 0
E =tension

Feature
FeatureComponents

File

FileSFPCatalog

Fant

HHCaontent

HHFilter
HHMameS5pace
HHMameSpaceToFile
HHMameSpaceT oFilter
HelpFile

HelpFileT oM amezpace o
HelpFilter

HelpFilterT oM amezpace
HelpM amespace
HelpFlugin

ISDFLInfo

|155elfReg

lcon

IniFile:

IniLocator

|nstallE vecuteSequence

InstallllS equence

| zolatedComponent

LaunchCondition ﬂ

Tables: 101 |Feature - 3 rows [Mo colurn is selected. v

Figure 3. Products are organized into Features, which can be seen in the Features table of the MSI
database.

One of the key organizational concepts for products deployed with Windows Installer is that they
need to be organized into features. A feature is the smallest unit of the product that the user can
choose to ingtall or not to install. In myVFPApp, the sample application for this session, there are
three features: the main program and readme file, the data files, and the help file. Inside the M Sl
file, there is a Feature table that reflects this organization, as shown in Figure 3.

Note: In InstallShield Express, there is always one feature named “Alwaysinstall” and it is not

optional. InstallShield Express also makes this feature not visible on the Custom Setup dialog by
setting the Display property value to zero.

Aswe have aready mentioned, an MSI database is arelationa database, and as every VFP
developer knows, relational databases employ primary keys and foreign keys to establish
relationships between tables. The primary key field for atable in an MSI database is displayed as
the left-most column in Orca. A foreign key field can be identified by the trailing underscore in its
name. For example, in Figure 3, note the trailing underscore in the name of the next to last
column, “Directory_”. Thisidentifies the contents of this column as aforeign key into another
table, specifically the Directory table in this case.

The Component table

At alower level of organization, and unseen by the end user, a product is organized into
components. Components are the lowest level of logical container in the product, and can be
though of as the organization of the product as seen by the developer rather than the end user.

Components are the building blocks for features: afeature consists of one or more components. If
afeatureisingaled, al of its components are installed. If afeature is not installed, none of its
components are installed, unless one of the componentsis also part of another feature that is

installed (a component can be associated with more than one feature).

In our sample M Sl database, we can look at the Component table to see what components are
used in our product. The Components table is shown in Figure 4.

~* my¥FPApp.msi - Orca ==&
File Edit Tables Transform Tool: View Help
D|==] #|=e] =l=e| ==
ﬂes |A Companeht | Componzntld | Directary | Abtribubes | Condition | K.eyPath |
ActionT ext All0therFiles {4BASCIEF-ERAR. . INSTALLDIR 2
AdminE xecuteS equence A0 therFiles1 {4849C9EB-ERAS-1... INSTALLDIR 2
AdminU1Sequence All0therFiles? {4BA9CTF1-EBAR-T... INSTALLDIR 2
AdvtE wecuteSequence Global_Controls_ COMCATDLL 3207... |{3207D1B1-80E5-1... | Swystem 320701B0_... |24 Global_Controls_C...
AdvtlIS equence Global_Controls_MSCOMCT 20032, |{3207D1B8-80E5-1... | System 3207D1B6_... |24 Global_Controls_ k...
Appld Global_Systern OLEAUT32 8C0CHS.. |{997FA9E2-E0RT-1.. System SCOCHIAD .. 24 Global_System_OL...
fippSearch Global_Systern OLEPRO32.8C0CH53.. |{10048713-2C96-1... Syetem.3COCHIAD .. 24 Global_System_OL...
EE Cortrol — | Global_System STDOLE.SCOCS3A0.. | {474FE1F1-7342-11... System.BCOCS3IA0_.. 24 Global System_ST...
Eillboard 15%_DEFAULTCOMPOMENT {4843CEDERAS-.. | INSTALLDIR 2
Einary 15%_DEFAULTCOMPOMENT {4849CIFFEBAS-T... | INSTALLDIR 2
Bindimage 15¥_DEFAULTCOMPOMENTZ2 {4849CIFI-EGAS-1... DATABASEDIR 2
CCPSearch bywfpapp.chr {48A9CIES-ERAR. . INSTALLDIR 2 Myvfpapp. chim
CheckBox tywfpapp.exe {48A9CIEF-ERAR. . INSTALLDIR 2 Myvipapp. exe
Class YWFP_HTML_HelpS_Support____ *8... {AAC459BA-9FBC-4... WFP.3643236F_FC... 8 FL_fouhhelpd_exe_...
ComboBox _WFPB_RUNTIME_DLL_ 836 {1128C875-6403-4.. WFP.3B43236F_FC.. B FL_wipFt dl____ ..
CompLocator _WFPB_RUNTIME_RES_CORE__ .. {A1B1EBA4-B3EA-. WFP.3B43236F_FC.. O FL_YFPPREMU_D...
Complus _WFP8_Runtime #BE.3B43236F . | {180 7ABA-BF25-4. . WFP.3B43Z36F_FC.. 8 FL_wipdr_dl____ ..
Component _WFP_GDIPus_DLL___ #BE.3643.. {235DBBEE-2F97-1.. WFP.3B43236F_FC.. B gdiplus_dI_2____..
Condition _wc_CRT #B6.3543236F_FC7... {C98BBCEO-4BEC-1... SystemFaolder3643.. 0
Control
ControlCondition
ControlE vent
CreateFolder
Customéction
Dialog
Diirectaory
DirLocatar
DuplicateFile
Ervironment Ll
Tables: 101 |Component - 13 rows [Mo column iz selected. 4

Figure 4. The Component table has one row for each component in the product.

Asyou can see, there are probably more components than you would have thought. Thisis due to
the addition of the VFP 8.0 runtime support libraries, the VFP 8.0 HTML support library, and the
MSCOMCT2.0cx ActiveX control and its dependencies, all of which are required to run our
sample application. These components, by the way, were added by simply including their merge
modules in our setup program (InstallShield Express 4.0 in this case) — we did not have to deal
with each of them individualy, which is one of the benefits of merge modules. In addition to these
components, you can spot MYV FPAPP.EXE and MYV FPAPP.CHM in the Component table.

The File table

The last table we will look at in detail here isthe File table. As you would expect from its name,
the File table contains one row for each file that isto be installed as part of this product. The File
table for the sample application is shown in Figure 5. In this figure, the rows have been sorted
alphabetically by name for easy reference; Orca enables you to sort the rows in atable by the
contents of a column simply by clicking on the column header.

~* my¥FPApp.msi - Orca

File Edit Tables Transform Toole Miew Help

D|=|E| FlE=le] #H=e] =S

Tables Iﬂ File I Component I FileM ame I FileSize I Yersion I Lahguage I Attributes I Sequence
E rvironment FL_WFF7REMWU_DLL___ .. _WFP8 RUM.. VWFPBRENU... 1150976 | B.0.0.2521 1033 a192 10
Errar FL_foxhhelp8_exe #... WFP_HTML_... FOxHHE™... 57344 8.0.0.2518 1033 a192 13
Eventhd apping FL_foxhhelpps8_dIlL__ ... WFP_HTML_... FOxHHE™1... EE56 8.0.0.2518 1033 8192 14
E stension FL_mswer?0 dll_ 86 _wc CRT__ . msvor70dlim.. 303104 709111.0 1033 a192 15
Feature FL_wfpdr_dl____ =BE3E.. _VFP3 Runti.. vipSrdilvfpsr.. 4292608 2.0.0.2521 1033 8132 9
FeatureCamponents FL_wfp?t_dl| ®BE.36.. |_WFPB_RUM... wipBtdilvipBt.. 3768320 8.0.0.2521 1033 a192 1
File Global Controlz COMCAT... | Global_Contr... comcat.dil 22288 4.71.1460.1 1033 a192 3
FileSFPCatalog Global_Controlz_MSCOMC... | Global_Contr... | mscomctZ2ock | B47ET2 E.0.88 4 1033 a192 4
Fant Global_System_OLEAUT3.. Global_Syste.. | aspcfilt.dl 147728 2.40.42751 1033 8132 7
HHContent Global_System_OLEAUT3... | Global_Spste... | oleaut32.dl 598288 2.40.42751 1033 a192 g
HHFilter Global_System_OLEPRO3... | Global_Spste... | aolepra32.dil 164112 5.0.42751 1033 a132 I
HHM ameS pace Global Spstem_STDOLE_ ... | Global_Syste... stdole2 b 17320 24042751 1033 a192 B
HHMameSpacaToFile My fpapp.chm Myvtpapp.chm | Mywfpapp.chm | 12540 a192 16
HHMameS pace T oF ilter Mywfpapp. exe Myvipapp.exe | Myvipapp.exe | 453953 1.0.0.0 1033 a192 2
HelpFile Readme. bt 15%_DEFAIL... Readme bt 7 a192
HelpFileT oM amespace — |odiplug_dil 2 =8E.3E.. _VFF_GDIPh.. odiplss.dilgdi.. 1700352 5.1.3097.0 1033 8132 12
HelpFilter myD ata. DBF2 1S¥_DEFAUL... myDataDBF 5106 a192 17
HelpFilterT oM ameszpace mylata FPT2 |5=_DEFAIL... myData FPT 24448 a192 18
HelpM amespace
HelpFlugin
ISDFLInfo
155elfReg
lcon
IniFile
IniLocator
|nstallE xecuteSequence
InstallllS equence
| zolatedComponent
LaunchCondition ;I

Tables 101 [File: - 13 rows [Ma colurnr i selected. v

Figure 5. The File table has one row for each file that is to be installed.

The primary key for the File table is the File column, whose value is usually related to but not
necessarily the same as the actual file name. Note that the second column, “Component ", isa
foreign key into the Component table. This establishes the relationship between each component
and the file(s) that it installs.

Other tables of interest, although not illustrated here, include the FeatureComponents table,
whose entries establish the relationship between the product’ s features and the components that
are associated with each of those features, and the Upgrade table, which contains information
required to deploy a mgor upgrade.
Note: The version of InstallShield Express that shipped with VFP 7.0 lacked the ability to populate
the Upgrade table, which was one of the major limiting factors to its effectiveness as a real

deployment tool. Fortunately, the version of InstallShield Express that ships with VFP 8.0 does not
have this limitation.

Now that you know how to open an M S| database file in Orca and how to find your way around
the tables you' Il find inside, you are equipped to go exploring on your own. The MSI database file
for this session’s sample application is included in the session downloads as MYV FPAPP.MSI. Note
that thisis only the MSI database file, not afull install package; the full install package runs about
10.6MB as a single-image setup executable and is not included in the downloads because of its
sze.

We should add a couple of caveats before you open up other MSI or MSM (merge module) files
with Orca.

Remember that Orcais an editor as well as aviewer, and changes you make to afile,
whether accidentally or on purpose, may have unintended consequences.

Orcawill change the Modified date of afile even if you don’'t make any changesto it. This
isusualy harmless, but can have an effect on future updates due to the Windows Installer
versoning rules for determining when to replace an existing file during an update. For
example if you open the VFP 8 runtime files merge module in Orca, its Modified date will
be changed and a future release of VFP 8 may not install an updated merge module like its
supposed to.

In short, be sure you have a good backup before you go exploring in other people' sMSI or MSM
files.

Designing applications with deployment in mind

Y ou have seen from the discussion above that the concept of features and componentsis central
to the organization of an MSI database, and hence to the entire Windows Installer deployment
scenario. Therefore it only makes sense for you to think about your product (your VFP
application) in terms of features and components from the very beginning of the design phase.

Features

In most cases, the delineation between features in your product will be fairly self-evident. For
example, in the sample product myV FPApp, one feature is used for the main program, a second
feature is used for the datafiles, and a third and optional feature is used for the help file. In
general, the more features you use, the more control you will have later on when it comes timeto
design and deploy updates to your product. Naturally, there is a correlation between the number
of features you decide to use and the complexity of the dialog the user will have to contend with
when performing a custom setup. With alittle forethought, a good balance can be reached early in
the design phase.

Because VFP applications aways involve database files in one form on another, data files are an
obvious candidate for their own feature(s). This can be an important decision when it comes time
to deploy an update, because updates can be structured to reinstall only certain features if desired.
There are other ways to be sure that an update doesn’'t overwrite a user’s live data files—aways
an important consideration for an update!—but putting the data into its own feature(s) in the
setup is generally agood idea for this and other reasons.

Components

One thing to be aware of when determining how to structure your application in terms of
componentsis that each component has a keypath resource, typically afile, that Windows
Installer uses to determine if the component isinstalled or not. (The KeyPath property can be seen
as the rightmost column in Figur e 4, the Component table.) Identifying the most important filesin
your product and thinking about what else belongs together with them is one way to approach the
decision about how to organize your product into components. Other component decisions, such
as those for the VFP 8.0 runtime support libraries, will be made for you via their merge modules.

Keep in mind that a given component may be associated with more than one feature within a
product. If two features are selected for installation and both features install the same component,
Windows Installer will install the component only once.

Upgrades, updates, and patches

Probably nothing else about Windows Installer has caused more frustration among developers
than trying to deploy a simple update to an existing product. Windows Installer is a powerful
product. That power brings with it a certain amount of complexity, and this complexity certainly
manifests itself when it comes to deploying updates. Fortunately, alittle understanding goes a
long way toward relieving the frustration that many first-time Windows Installer developers feel
about this topic.

First, alittle terminology needs to be introduced. In Windows Installer, you will hear talk of
“upgrades’, “updates’, and “patches’. Each of these has a specific meaning, which we will
explore in aminute. In genera terms, however, each of them refers to the process of updating an
existing product—that is, a product that is already installed on the computer—with a newer
version of that same product. For the sake of convenience we'll use the term *update” when
talking about the update processin general, and will differentiate between the three terms only
when it’s important to understand their differences.

Small updates, minor upgrades, and major upgrades

Windows Installer provides for three kinds of updates: a“small update”’, a“minor upgrade’, and a
“magor upgrade’. (Note that we haven't used the word “patch” yet —we'll get back to that onein
ahbit). Keeping in mind that an MS| database isidentified by its product version and by the value
of the three GUIDs we mentioned earlier, the difference between these three types of updates can
be understood in terms of which of these values gets changed between the original version and the
updated version. The following table summarizes these differences.

Table 1. Small updates, minor upgrades, and major upgrades

Type of Package Product Product Upgrade
Install Code Version Code Code

Small update change don’'t change don’'t change don't change
Minor upgrade change change don’'t change don’'t change
Major upgrade change change change don't change

Asyou can see from Table 1, the package code, which identifies a specific MSI setup package,
always changes. Again, remember that the Package Code must be unique for each MSI database
that is released for installation of a product, so naturally it changes with any type of update.

Small updates and minor upgrades are used for updates that are not significant enough to warrant
changing the Product Code. A small update changes the Package Code but does not change any
of the other three properties. A minor upgrade changes both the Package Code and also the
Product Version.
Note that the Product Version we are talking about here is a property of the MSI database; it is NOT
the same thing as the “version number” you are accustomed to assigning to your VFP EXE file at

build time. The version number assigned to your EXE file is also important, but its value is unrelated
to the Product Version as far as Windows Installer is concerned.

The difference between a small update and a minor upgrade is that after installation of a small
update Windows Installer cannot differentiate between the origina version and the new version,
because the Product Version did not change, whereas after installation of a minor upgrade
Windows Installer can tell the difference. This has implications for future updates, and for this
reason minor upgrades are generaly preferable to small updates.

A mgjor upgrade is used when deploying a major change to the product. A rule of thumb would
be that you would use a magjor upgrade whenever you would change the first digit of the Product
Version — for example, when releasing myVFPApp version 2.0 to replace myVFPApp version 1.0.
In amajor upgrade, both the Product Version and the Product Code are changed. Note that the
upgrade code never changes: myVFPApp version 2.0 (and version 3.0, 4.0, etc.) will al have the
same upgrade code as myVFPApp version 1.0.

Small updates and minor upgrades are handed by Windows Installer as areinstallation of the older
version of the product, while major upgrades are generally handled as the removal of the older
product (if present) followed by afresh installation of the newer product.

Because of this, the way you have to deploy a small update or aminor upgrade is a bit different
than how you deploy amajor upgrade. In all three cases, if there is no older version of the product
on the target computer, the setup package should function as afresh install. But if an older
version of the product is present, then in the case of a small update or a minor upgrade Windows
Installer must be told to reinstall the product using the new setup package.

Telling Windows Installer to reinstall the product using the new setup package requires that the
values of the REINSTALLMODE and REINSTALL properties be set appropriately. Specificaly,
REINSTALLMODE should be set to ‘vomus'. (The order of these characters is unimportant, and
you may often see ‘vomus’ written as ‘voums'.) Table 2 gives the meaning of these values. The

REINSTALL property istypically set to ‘ALL’, meaning reinstall all of the features that were
previoudy installed.

Table 2: Values of the REINSTALLMODE property.

Value Description
a Reinstall all files (force reinstall - USE WITH CAUTION)
Reinstall a file if the file is missing or its checksum is invalid
Reinstall a file if the file is missing or if a different version is installed
Reinstall a file if the file is missing or if the same or an older version is installed
Rewrite all machine-specific registry entries
Reinstall a file if the file is missing or if an older version is installed
Reinstall a file only if the file is missing
Reinstall shortcuts
Rewrite all user-specific registry entries
Reinstall from the specified source (MSI file) and re-write the local cached package

<|lc|lw|oT|o|3S|o|alo

Asyou can see, thevalues‘o’ and ‘s’ tell Windows Installer to overwrite older or missing files
and to reinstall shortcuts. The values‘m’ and ‘u’ tell Windows Installer to rewrite the machine-
specific and user-specific registry entries.

Thevaue ‘v’ is probably the most important here, because it tells Windows Installer to install
from the new MSI file and to rewrite the cached copy of the file on the user’s computer. The
reason that thisis important is because without it Windows Installer will identify the Product
Code and Upgrade Code of your update as matching those of the MSI file it has aready cached
from the origind ingtallation. However, because the Package Code in the new M S fileis different
than the Package Code in the cached file, you will encounter an error stating that “ Another
version of this product is already installed”. This error message is probably one of the ones most
frequently encountered when first working with MSI updates.

Using the ‘v’ parameter circumvents this problem. If you’' re using a setup tool that can create a
setup launcher (SETUP.EXE) that can set these properties for you, then you don’t have to worry
about setting them explicitly at installation time. But if your setup tool doesn’'t have the capability
to create such a setup launcher, then you will need to set these properties another way. There are
severa ways to do this: the values for these properties can be passed to the M S| executable
(MSIEXEC.EXE) ether viathe command line or viaa SETUP.INI file. Regardless of how you go
about it, though, the ‘v’ setting has to be set at installation time rather than being stored in the
MSI database.

To force areingtal from the new MSI file using the M SIEXEC.EXE command line interface, use
the following syntax:

nmsi exec /i nyVFPApp. msi RElI NSTALLMODE=vonus RElI NSTALL=ALL

Setup packages (i.e., SETUP.EXE) created with InstallShield Express have their own command line
interface. You can pass MSlI command line parameters to M SIEXEC.EXE through SETUP.EXE by
using the “/v” option. To force areingtall from the new MSI file using SETUP.EXE, use the
following syntax:

set up. exe /v” REI NSTALLMODE=vonus RElI NSTALL=ALL"

To force areingtall from the new MSl file viathe seTur.INI file, add these values to the CmdLine
entry in the [Startup] section of the INI file, like this:

[Startup]
CndLi ne=REI NSTALLMODE=vonus REI NSTALL=ALL

The CD_ROM type of build in InstallShield Express will create the MSI database, the Setup.ini
file, and the Setup.exe launcher as separate files, along with the actual filesto be instaled. It is
therefore a good type of build to use in Situations where you are deploying a small update or a
minor upgrade and must set the value of REINSTALLMODE using one of the methods described
above.

Major Upgrades

Unlike small updates and minor upgrades, major updates are handled not as a reinstallation of an
existing product but rather as the uninstallation of the existing product followed by the fresh
instalation of the updated product. Mg or upgrades therefore do not require using the
REINSTALLMODE and REINSTALL property values as discussed above. Instead, a mgor
upgrade works by populating the Upgrade table in the MSI database with one or more rows that
specify the Upgrade Code GUID, minimum version, and maximum version of the older product to
be uninstalled.

Figur e 6 shows the Upgrade table from the setup package for version 2.0.0 of myVFPApp, which
is constructed as a major upgrade. Notice that the Upgrade Code GUID specified in the Upgrade
table is the same as the Upgrade Code GUID for versions 1.0.0, 1.0.1, and 1.1.0 of myVFPApp.
Also notice that the VersonMin and VersionMax columns identify version 1.0.0 and version 1.1.0
as the minimum version and maximum version, respectively, of myVFPApp that are to be
uninstalled and replaced by version 2.0.0.

Data files

Datafiles need special consideration during any kind of any update. Windows Installer uses
versioning rules to determine when to overwrite an existing file of the same name. For
unversioned file such as Visua FoxPro database containers, tables, indexes, and memo files,
Windows Installer looks to the file's Creation date and its Modified date; if these are different,
Windows Installer assumes that the file has been updated by the user and does not overwrite it.
This by itsdf affords some measure of protection against a product update overwriting a data file
that has been updated by the user since the initial installation. Y ou can go a step further and mark
datafiles (or any file, for that matter) as ‘Never Overwrite’ — this can be done viathefile's
property sheet in Install Shield Express, for example.

The versioning rules and even the Never Overwrite setting, however, do not protect against a data
file being uningtalled along with the rest of a product during installation of a major upgrade. To
prevent loss of data during a major upgrade, you should take the additiona precaution of marking
your datafiles as ‘ Permanent’ in theinitia ingtalation, meaning that they should never be
uninstalled. In InstallShield Express, this can aso be done viathe file's property sheet.

=¥ my¥FPApp.msi - Orca o] x|
File Edit Tables Transform Tools YWiew Help
D] & |%=|@| #|=|e| =%
Tahles I :l UngradeCode IVersiDnMin VersionMax | Language | Atributes | Rel
PatchPackage {48A0COES-E6AS-11D7-8387-0050DAG4B851)} 1.0.0 1.1.0 768
Progld
Property
PublishComponent
RadioButton
Reglocator
Reqgistry
RermoveFile

RemovelniFile
RemoveReqistry
ReserveCost
SFPCatalog
SelfReg
ServiceContral
Servicelnstall
Shortcut
Signature
TextStyle
TypelLib
UIText
Upgrade

Yerb
_“alidation

=~ |4 |

Tables: 101 |Upgrade - 1 row Mo column is selected.

N =

Figure 6.The Upgrade table identifies the older version(s) of the product that are to be replaced.

Patches

In Windows Installer, a patch is just another way of deploying an update, not a different type of
update itself. In other words, a patch is ssmply another way of packaging one of the three types of
updates you already know about.

A patch package represents the difference between two other installation packages. In order to
create a patch package, you must start with two complete installation packages, one for the older
version and one for the newer version of the product. One thing to keep in mind when planning to
create a patch is that both of the source packages must have the same format: for example, both
must be contain either compressed or uncompressed source files.

The actual creation of the patch package, which is afile with an M SP file name extension, can be
accomplished using your setup development tooal, if that tool is capable of creating patches, or by
using tools provided in the Windows Installer SDK. The patch creation process involves looking
at the installation package for the newer version of the product, comparing it to the installation
package for the older version of the product, and then producing a file that defines the differences.

The primary benefit of deploying as update using a patch package is that a patch package will
usualy be much smaller than the full installation package. A patch package by itself, however,

cannot be used to install the product; a patch package requires the presence of an older version of
the product on the target computer, in order to have a base file to which the patch can be applied.
(Actually, it doesn't have to be an older version per sg, it just has to be the case that there is some
predetermined version of the product already installed so that the patch has something to be
applied to. It is possible to construct what are called anti-patches to revert a product to an earlier
version, but that’s a discussion for another day.)

In summary, patches can be a useful packaging aternative when distributing updates. Check the
capabilities of your favorite Windows Installer-based setup tool to see what patching capabilities
it offers. Also take alook at the patch creation tools provided in the Windows Installer SDK.

Conclusion

As VFP developers, we are immersed in the world of Microsoft technologies. Among the
technologies that we have to interact and be familiar with are various system DLLs, ActiveX
controls, data storage alternatives and database access methods, and of course the Windows®
operating system itself. Since the release of Visua FoxPro 7.0, which lacked the old familiar VFP
setup wizard, thislist now also includes the Windows Installer. Whether or not you plan to use a
Windows I nstaller-base setup tool such as Install Shield Express, you can improve your overall
abilities as a developer by becoming familiar with this important core technology. On the other
hand, if you do plan to use a Window Installer-based setup tool, then knowing what’s going on
“under the covers’ will certainly help you to understand why things happen the way they do.

