
This article was originally published in the July, 2004 issue of FoxTalk 2.0
www.foxtalknewsletter.com

Introducing Inno Setup
Rick Borup

Inno Setup is a free, yet powerful, installer well suited for deploying Visual FoxPro applications. It 
provides a robust feature set for the developer and delivers a professional-looking installation for 
the end user. Rick Borup introduces you to Inno Setup and shows you how to use it with Visual 
FoxPro. This article covers the basic concepts and walks you through building a simple setup.

It’s been said there’s no such thing as a free lunch. That may be true, but there is such a thing as a free 
installer and its name is Inno Setup. The fact it’s free is just icing on the cake, because Inno Setup is a great 
tool and would be well worth your time to learn even if you had to pay for it (which of course you can if 
you want to help support it).

Inno Setup is described as a script-based setup tool because the instructions you write to create a setup 
package are stored in a simple text, or script, file. Inno Setup scripts are easy to understand because they’re 
based on a simple syntax that uses self-explanatory English words and abbreviations. You’ll be able to 
create your first script in no time.

To get started with Inno Setup, download a copy from www.jrsoftware.org/isdl.php and install it on 
your computer. I’m using version 4.1.3 for this article, but Inno Setup is updated frequently and it’s very 
likely there will be a newer version by the time you read this. Download and install the newest version 
available. The Inno Setup Web site has a complete revision history at www.jrsoftware.org/files/is4.2-
whatsnew.htm where you can find out what’s new in each release. 

Although commonly referred to simply as Inno Setup, the formal name of this tool is the Inno Setup 
Compiler. The compiler, of course, is actually the most important part because it’s what builds the setup 
package. After installing Inno Setup, you have an Inno Setup 4 group on your Start menu. To launch Inno 
Setup, choose Inno Setup Compiler from this menu. In addition to the compiler, Inno Setup has its own 
editor for creating and editing script files.

Inno Setup comes with a good Help file. Unfortunately it’s in the older WinHelp format instead of 
HTML Help, but the quality of the content makes up for this minor inconvenience. After you install Inno 
Setup, take a moment to familiarize yourself with the Help file. For starters I’d recommend reading the 
“What is Inno Setup?” page and the first four pages under the “How to Use” section. Then locate the 
“Setup Script Sections” section of the Help file and keep it handy as you work and learn Inno Setup. This 
section is your primary reference for Inno Setup script syntax, and you may want to refer to it as you read 
the rest of this article.

Creating your first Inno Setup script
This article takes you through the steps necessary to create a minimal yet fully functional Inno Setup script 
for a hypothetical Visual FoxPro 8.0 application called myVFPApp. The distributables for myVFPApp are 
an executable file named myVFPApp.exe and a readme file named readme.txt. In addition, the setup will 
need to install the Visual FoxPro runtime files and their dependencies.

Inno Setup script files are text files with an ISS file name extension. Because they are simply text files, 
you can create or edit Inno Setup scripts with any text editor. Using Inno Setup’s own built-in editor has 
several advantages, though, among them syntax coloring and one-button access to the compiler.

When you launch Inno Setup, a Welcome dialog offers to create a new script or open an existing one, 
as illustrated in Figure 1. Choosing Create a new empty script file creates a brand new file that starts out as 
a blank page in the editor. 

www.foxtalknewsletter.com
www.jrsoftware.org/isdl.php
www.jrsoftware.org/files/is4.2


Figure 1

The other choice is to use the Script Wizard, a built-in tool that walks you through a series of steps to 
create a new setup script. You should be aware of the Script Wizard because if it is turned on (as it is by 
default) it starts automatically when you choose File | New from the main menu. I won’t cover the Script 
Wizard here. If you’d like to know more, you can explore it on your own; you can also find a discussion of 
the Script Wizard in Appendix D of Deploying Visual FoxPro Solutions from Hentzenwerke Publishing. 

In addition to the usual buttons for New, Open, Save and Help, the toolbar of the InnoSetup IDE has 
buttons to start and stop the compiler and to run the setup after compilation.

An Inno Setup script file is organized into sections, much as an INI file. Section headers are enclosed 
in square brackets, and the entries for each section follow the section header with one entry per line. This 
simple structure makes it easy to read and write a script file.

The Setup section
The first section in an Inno Setup script is the Setup section. The entries in this section pertain to the entire 
setup and include settings for the name of the product, its version number, and so forth. The Setup section 
entries for myVFPApp are as follows. Note that you can place a comment anywhere in a script by starting 
the line with a semi-colon.

; -- myVFPApp.iss --
; This is the setup script for myVFPApp version 1.0.0.
[Setup]
AppName=MyVFPApp
AppVerName=MyVFPApp version 1.0.0
DefaultDirName={pf}\MyVFPApp
DefaultGroupName=MyVFPApp

The names to the left of the equals sign in the Setup section are called directives. As you can see, 
directives are easy-to-read English words or abbreviations. Although a typical script has many directives in 
the Setup section, only AppName, AppVerName, and DefaultDir are required. The AppName directive is 
the name of the application the way you want it to be displayed during installation. The AppVerName 
directive is similar to AppName, but includes the version number. The DefaultDirName directive specifies 
the default destination directory for the product. The other directive shown here is DefaultGroupName, 
which specifies the default Start menu folder name used when creating shortcuts.

In the DefaultDirName directive, notice the use of the constant {pf} in front of the directory name. 
Inno Setup uses several constants like this to indicate entries whose actual values are resolved at 
installation time. The {pf} constant points to the Program Files folder on the user’s computer. This and the 
other constants used by Inno Setup are explained in the Help file under How to Use | Constants.

The Files section
The Files section is where you list the files you want to install. The entries in this section are structured in a 
parameter: “value” format. You can place two or more parameters on one line by separating them with 
semi-colons. The Files section entries for myVFPApp are as follows. 

[Files]
Source: "MyVFPApp.exe"; DestDir: "{app}"
Source: "Readme.txt"; DestDir: "{app}"; Flags: isreadme



Entries in the Files section require a minimum of two parameters: a Source parameter and a DestDir 
parameter. The Source parameter specifies the location of the source file on your computer or network. 
Unless a full drive and path are specified, the source is relative to the location of the script file. The 
DestDir parameter identifies the destination directory for the file on the user’s computer. Note the use of 
the constant {app} as the value for the DestDir parameter. The {app} constant points to the directory the 
user chooses as the destination directory when installing the application.

The entry for the readme.txt file illustrates the use of flags. Flags allow you to specify additional 
options for a file. The isreadme flag tells the compiler this is the “read me” file for this setup and instructs 
the installer to prompt the user to view the file after installation is complete. This flag can be used on only 
one file per script.

The Icons section
Except for the VFP runtime files, you could actually stop right here and have a complete script. It’s 
customary to create a shortcut, though, and in Inno Setup this is accomplished by adding an Icons section. 
Entries in the Icons section, like the entries in the Files section, consist of parameter and value pairs. 
Following is the entry to create a Start Menu icon for myVFPApp.

[Icons]
Name: "{group}\MyVFPApp"; Filename: "{app}\MyVFPApp.exe"

Again, note the use of constants. The Name parameter uses the {group} constant, which points to the 
Start Menu folder on the user’s computer. The Filename parameter uses the {app} constant along with the 
name of the application’s executable file to specify the target of the shortcut.

The VFP runtime files
The script entries for the VFP runtime files belong in the Files section, but these files require special 
handling: the runtime files for VFP 7 and VFP 8 go into the Common Files folder, and the Visual C++ 7.0 
runtime DLL goes into the System folder. Because the entries for the runtime files are the same for all VFP 
apps, you can save them in a separate file and simply copy them into your setup scripts as needed. 

Here are the Files section entries for the VFP 8 runtime files. (Line breaks have been inserted to fit the 
column width for publication; in the actual script each entry is a single line.)

[Files]
Source: C:\Program Files\Common Files\Microsoft Shared\
VFP\gdiplus.dll; DestDir: {cf}\Microsoft Shared\VFP; 
Flags: sharedfile uninsneveruninstall restartreplace

Source: C:\Program Files\Common Files\Microsoft Shared\
VFP\vfp8r.dll; DestDir: {cf}\Microsoft Shared\VFP; 
Flags: regserver sharedfile uninsneveruninstall 
restartreplace

Source: C:\Program Files\Common Files\Microsoft Shared\
VFP\vfp8t.dll; DestDir: {cf}\Microsoft Shared\VFP; 
Flags: sharedfile uninsneveruninstall restartreplace

Source: C:\Program Files\Common Files\Microsoft Shared\
VFP\vfp8renu.dll; DestDir: {cf}\Microsoft Shared\VFP; 
Flags: sharedfile uninsneveruninstall restartreplace

Source: C:\VFP8Distrib\System32\msvcr70.dll; DestDir: {sys};
Flags: uninsneveruninstall onlyifdoesntexist

Note the use of a fully qualified drive and path for the Source parameter. This is because the source 
files are not in the same directory as the script. The source for the VFP runtime files is the Common Files 
folder on your computer, which can be referenced directly in the script as shown. The msvcr70.dll file 
resides in your computer’s System folder, but for safety reasons Inno Setup (by default) no longer allows 
you to deploy files directly from your own System folder. The solution in this case is to copy msvcr70.dll 
to another folder and reference the copy in your script. 



Another new constant is introduced in the DestDir parameter for these entries. The {cf} constant 
points to the Common Files folder on the user’s computer. New flags are introduced here, too. The 
sharedfile flag tells the installer to increment the file’s reference count on the user’s computer. The 
uninsneveruninstall flag tells the installer not to uninstall this file when the application is uninstalled. The 
restartreplace flag tells the installer to set the file to be replaced upon restart if the file is in use during 
installation. The onlyifdoesntexist flag means copy this file only if it doesn’t already exist on the user’s 
computer. Finally, the regserver flag (used with vfp8r.dll) tells the installer to register the DLL on the 
user’s computer.

You can add these five entries to the Files section of your script by simply typing them in, or you can 
store them in a separate file and copy and paste them from there. A third way is to use Inno Setup’s 
#include directive to bring them in from a separate file at compile time. For example, if you store these 
entries in a file called VFP8Runtimes.txt, you can include them in your script by adding the following line 
to the Files section:

#include “VFP8Runtimes.txt”

Files you incorporate into your script with the #include directive don’t need to have an ISS file name 
extension, although they can. It’s okay to have more than one section with the same name in a script, so 
you don’t have to worry about removing the section header(s) from an included file.

Compiling the script
When you’re ready to compile your script, simply click the Compile button on the Inno Setup toolbar as 
illustrated in Figure 2. Before compiling a new script for the first time, give it a name and save it to disk. 

Figure 2

The sample script myVFPApp.ISS is available in accompanying download file. The Download also 
includes the VFP8Runtimes.txt file as well as myVFPApp.exe and readme.txt. To compile the script you 
need VFP 8 installed on your machine so the compiler can find the runtime files.

When you click the Compile button, Inno Setup compiles the script file line by line, opening a 
Compiler Status window below the editor to log each step in the compilation and any errors encountered. 
If an error is detected the compilation halts, an error message displays, and the line with the error will be 
highlighted in the editor (see Figure 3).



Figure 3

If no errors are detected, the compiler generates the setup.exe file. The usual location for this file is a 
folder called Output, which by default is created under the directory where the script itself is located. To 
deploy your app to your users, simply send them the setup.exe file.

Inno Setup ships with a number of sample scripts to help get you started. Although not specific to 
VFP, these sample scripts are a good place to start learning. If you install Inno Setup to its default location, 
the sample scripts are located in C:\Program Files\Inno Setup 4\Examples.

Stay tuned
In this article, I showed you how to create a simple Inno Setup script file for a Visual FoxPro 

application. In a future article, I’ll show you some cool things you can do with your scripts to make 
working with them easier for you and to enhance the installation experience for your end users.

Download the code from www.ita-software.com/papers/FT407Borup.zip.

Rick Borup is an independent developer who has been working with FoxPro and Visual FoxPro for over ten years. He 
is owner and president of Information Technology Associates, a software design, development, and consulting firm he 
founded in 1993. Rick has spoken about VFP and related topics to several user group meetings and was a speaker at 
the Great Lakes Great Database Workshop in Milwaukee. He is an MCSD and MCP in Visual FoxPro, and is co-
author of the book Deploying Visual FoxPro Solutions from Hentzenwerke Publishing. rborup@ita-software.com.

www.ita

