Thisarticle was originally published in the October, 2004 issue of FoxTalk 2.0
www.foxtalknewsletter.com

Inno Setup, Part Two

Rick Borup

In part one of this series (see the July 2004 issue), Rick Borup introduced you to Inno Setup and
explained the basics of using it to deploy Visual FoxPro applications. In part two, Rick builds on the
example from part one and shows you several things you can do to enhance your Inno Setup
scripts, including how to install database files to a location independent of the app itself.

In part one of this series, | showed how to construct a very basic Inno Setup script to install a sample
Visual FoxPro application called myVFPApp. That script looked like this:

[Set up]

AppNanme=M/VFPApp

AppVer Nane=MyVFPApp version 1.0.0

Def aul t Di r Name={ pf }\ M\yVFPApp

Def aul t G- oupNane=MyVFPApp

[Files]

Source: MyVFPApp. exe; DestDir: {app}

Source: Readne.txt; DestDir: {app}; Flags: isreadnme
#i ncl ude "VFP8Runti nes. txt"

[l cons]

Name: {group}\ MyVFPApp; Filename: {app}\M/VFPApp. exe

This script, although simplistic, is complete and functional. Of course, in the real world you need to
handle much more complex installations. Some typical requirements include:
- requiring the user to accept to alicense agreement before installation;
specifying a minimum operating system version on the target machine;
creating registry entries,
displaying custom graphicsin the setup wizard;
organizing the installation into components; and
installing database files to a different location than the application itself.

In addition, there are several things you can do to make your setup scripts easier to work with.

Setup section enhancements

By default, Inno Setup expectsto find the files referenced in the script in the same folder as the script itself.
If thefilesarein adifferent folder you can use afully qualified drive and path for each file, but this makes
the script entries much longer and more cumbersome. The aternative isto add a SourceDir directive to the
Setup section, which makes al file references relative to the specified drive and folder, like this:

Sour ceDi r =C: \ FoxTal k\ MyVFPApp

Also by default, the output file created by the Inno Setup compiler is named setup.exe and is written to
a sub-directory named Output. Y ou can use the OutputBaseFilename and OutputDir directives to specify a
different output file name and location. The following example tells Inno Setup to name the compiler
output “myVFPApp 1.0.0. Setup.exe” and write it to C:\FoxTalk\MyV FPApp\Distrib.

Qut put BaseFi | enanme=nyVFPApp 1.0.0 Setup
Qut put Di r =C: \ FoxTal k\ MyVFPApp\ Di strib

If your app requires a minimum version of Windows or Windows NT on the target machine, you can
specify thiswith the MinVersion directive. The example below shows how to require Windows 98 Second
Edition or Windows 2000. The version numbers are documented in the Inno Setup help file.

M nVer si on=4. 1. 2222, 5. 0. 2195

www.foxtalknewsletter.com

To display alicense agreement and require the user to accept it before installing your application,
simply add a LicenseFile directive to the Setup section of the script. The license file can be either aplain
text file (.txt) or arich text file (.rtf).

Li censeFil e=license.rtf

Update considerations
When you install an update, Inno Setup looksto see if aprevious version is already installed. A previous
version of the same application isidentified by its Appl D, which is an internal value you can set with the
ApplD directive. If the ApplD directiveis omitted, Inno Setup uses the AppName, but unlike the
AppName the ApplD is never displayed during setup and can therefore be any value you want it to be.
Whether used implicitly or explicitly, acommon ApplD valueiswhat ties all versions of agiven
application together. One important reason to use acommon ApplD across al versions of the same
application is so the uninstall information for an update is appended to the uninstall information from the
previous installation. Without a common ApplD each version would have its own entry in the Windows
Add/Remove Programs list. In this example, the ApplD isthe same as the AppName.

Appl D=MyVFPApp

When you install an update, Inno Setup defaults to the directory where the previous version isinstalled
even if adifferent directory is specified in DefaultDirName. This behavior is controlled by the
UsePreviousAppDir directive, whose default value is yes. Along the same lines, when you install an update
it can be assumed the destination directory already exists and no warning to the user is necessary. When
you install anew application, however, Inno Setup warns if the destination directory already exists. This
behavior is controlled by the DirExistsWarning directive, whose default value is auto.

If you want to use the default values for these two directives you don’t need to include them in your
script. However, | like to include them anyway just as a reminder that they affect the setup.

UsePr evi ousAppDi r =yes
Di r Exi st sWar ni ng=aut o

Customizing appearance

Y ou can customize the appearance of the setup wizard dialogs during installation by using custom bitmap
files. There are a number of different Inno Setup bitmap files available for download, or you can create
your own. Both alarge and a small image are required; the maximum sizes are 164x314 for the larger one
and 55x55 for the smaller one. Add custom wizard image files to your script like this:

W zar dl mageFi | e=conpi | er: i nages\ W zModer nl magel3. bnmp
W zar dSnal | | mageFi | e=conpi | er: i mages\ W zMbder nSnal | | nagel3. bnp

The optional prefix ‘compiler:’ tells Inno Setup the location of the image filesis relative to the location
of the compiler itself. The advantage of doing thisis it makes these two directives independent of the
location of the script file itself or the location of files specified in the SourceDir directive, thus making
these entries usable verbatim in any setup script you create.

Creating registry entries

Registry entries can be created on the target machine by including a Registry section in the setup script. A
typical use for registry entries might be to store the location where the application isinstalled, asillustrated
in the following script.

[Regi stry]

Root: HKCU; Subkey: Software\l TA; Conponents: workstation; Flags: uninsdel etekeyifenpty
Root: HKCU; Subkey: Software\l TA nyVFPApp; Conponents: workstation; Flags: uninsdel etekey
Root: HKCU; Subkey: Software\l TA nyVFPApp\ Settings; Val ueType: string; ValueNane: AppDir;
Val ueDat a: {code: Get AppDir}; Conponents: workstation

Root: HKCU; Subkey: Software\l TA nyVFPApp\ Settings; Val ueType: string; ValueNane: DataDir;
Val ueDat a: {code: Get DatabDir}; Conponents: database

Thereferencesto ‘code:’ and ‘ Components.’ are explained later in this article.

Types and components
Inno Setup enables you to organize your installation into components, each of which can be associated
with one or more different setup types. The default setup types are full, compact, and custom, but you can
create your own. Files and other resources such as registry keys can be marked as belonging to one or more
components. When the user selects a setup type at installation time, Inno Setup installs the files and other
resources belonging to the components associated with that setup type. Files not marked as belonging to
any component are always installed unless other conditions take precedence.

Most Visual FoxPro applications are data-centric, so one natural way to organize the setup isto define
aworkstation component for the files that make up the application itself and a separate database
component for the database files. The Types and Components sections to accomplish this are as follows:

[Types]

Nane: full; Description: Full installation

Name: workstation; Description: Wrkstation installation

Name: dat abase; Description: Database installation

Name: custom Description: Custominstallation; Flags: iscustom

[Conmponent s]
Nane: workstation; Description: Wrkstation files; Types: full workstation
Name: dat abase; Description: database files; Types: full database

Looking at the Components section entries, you can see the workstation component is associated with
the full and workstation setup types, while the database component is associated with the full and database
setup types.

At setup time, the user can choose any of the four setup types. The setup wizard dialog displays alist
of the components associated with the selected setup type. The list includes a check box next to each
component so the user can see which components are installed with that type. If the user makes any
changes to the selected components, the custom setup type is invoked by default.

Individual files are associated with components by adding a Components parameter to the Files section
entries, followed by the name of one or more components, asillustrated below.

Source: MyVFPApp. exe; DestDir: {app}; Conponents: workstation
Source: Readne.txt; DestDir: {app}; Conponents: workstation; Flags: isreadnme

Making data independent of the app

In amulti-user runtime environment, a common deployment scenario is to install the application itself to
one location, such as the Program Files folder on the local machine, and to install the datafilesto a
different location, such as afile server, where they can be shared by al users. Thefirst step isto split the
application into a workstation component and a database component, as explained above. However, you
still need away to make the destination directory for the database component completely independent of
the destination directory for the application itself.

In the Files section, the value of the each file's DestDir parameter determines where that fileis
installed. The value of the DestDir parameter istypically relative to the {app} constant, which contains the
runtime value of the installation directory chosen by the user, or to another Inno Setup constant such as
{pf} or {cf} for the user’s Program Files or Common Files directory. If the database component isto be
installed to alocation that is unrelated to the location of the application itself, you cannot make the value of
the database files' DestDir parametersrelative to { app} or any other constant. You could use aliteral value
such as F:\Data\myV FPApp, but that’s not a good idea because it makes the setup totally inflexible.

To make the location of the data completely independent of the location of the application without
specifying afixed drive and path, the setup wizard should prompt the user for the database destination
directory at runtime. To accomplish this you need to insert a custom page in the setup sequence. Inno Setup
provides away for you to write code in your setup script for this type of customization.

Pascal scripting

Custom code in Inno Setup scriptsiswritten in Pascal scripting, which is placed in the Code section of the
script file. Pascal scripting may be unfamiliar to most of us as VFP developers, but don’t let that deter you.
After al, codeis code, right?

The code needed in this example should check whether the database component is selected for
installation, and if so should insert a custom wizard page into the setup sequence that prompts the user to
specify the destination directory for the database files. The value specified by the user is stored in astring
variable called DataDir. A function called GetDataDir returns the value of the DataDir variable.

The code | created for this purpose was adapted from one of the examples that come with Inno Setup.
Because of space limitations the full code is not printed in the body of this article, but asmall segment is
shown below to give you an ideawhat Pascal scripting looks like. The full setup script, including the entire
Code section, isincluded in this month’s subscriber downloads.

[Code]
var
DatabDir: String;
function CGetDataDir(S: String): String;

begi n
{ Return the selected DatabDir }
Result := DataDir;

end;

Once the Code section isin place, you can make calls to the GetDataDir function from other sections
of the setup script whenever it is necessary to insert the runtime value of the database directory. Among the
places where thisis necessary is the DestDir parameter for the database files. The File section entries for
these files are as follows:

Source: Datal\custoners.DBF;, DestDir: {code: GetDataDir}; Conponents: database
Source: Data\custoners.CDX; DestDir: {code: GetDataDir}; Conponents: database

These two files are also marked as belonging to the database component of the setup, so they're
installed only if the database component is selected.

The ability to make the location of the data independent of the location of the application is very
powerful because it enables you to create flexible setups that satisfy a wide variety of deployment
scenarios. This of courseis only one example of using Pascal scripting with Inno Setup. Thereis a great
deal more customization you can accomplish with the Code section; see the Inno Setup Help file for details
and ideas.

Conclusion

Inthisarticle, | showed you several things you can do with Inno Setup to turn the basic example from
part one of this seriesinto a more real-life setup script. This has still really only scratched the surface,
though. There isawide variety of information available to help you learn more. I'd recommend you start
with the Inno Setup Help file and the examples that accompany the product, then go to the Inno Setup Web
site (http://www.jrsoftware.org/isinfo.php) and start looking around. There are also a number of active
newsgroups for Inno Setup, links to which can be found on the Web page.

Download the code from www.ita-softwar e.com/paper §FT410Bor up.zip.

Rick Borup is an independent devel oper who has been working with FoxPro and Visual FoxPro for over ten years. He
isowner and president of Information Technology Associates, a software design, development, and consulting firm he
founded in 1993. Rick has spoken about VFP and related topics to several user group meetings and was a speaker at
the Great Lakes Great Database Workshop in Milwaukee. He isan MCSD and MCP in Visual FoxPro, and is co-
author of the book Deploying Visual FoxPro Solutions from Hentzenwerke Publishing. rborup@ita-software.com.

http://www.jrsoftware.org/isinfo.php
www.ita

